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ABSTRACT 
 
In this paper, equilibrium points and stability in the photogravitational restricted three-body problem 
(R3BP) with oblateness under a heterogeneous spheroid have been examined when the  bigger 
primary is a radiating mass and the smaller one is a mass having three layers with different 
densities while the infinitesimal mass is an oblate spheroid. It is seen that for some values of 
oblateness of the infinitesimal mass, radiation pressure of the bigger primary, heterogeneity of the 
smaller and mass parameter  , there exist up to five collinear equilibrium points all of which are 

unstable while a pair of triangular points exist and are stable when c 0 , where c is the mass 
parameter defined by the radiation pressure, oblateness and heterogeneity.    
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1. INTRODUCTION 
 
A formulation which describes motion of a 
particle having infinitesimal mass and moving 
under the gravitational influence of two main 
bodies called primaries is a well known problem 
in celestial mechanics, galactic dynamics and 
other scientific fields. This formulation named by 
Lagrange [1] till date is called the restricted 
three-body problem (R3BP). There are five 
particular solutions, often referred to as 
equilibrium points; by virtue of their locations, 
three are called the collinear points and two are 
triangular points. The collinear points are 
unstable while the triangular solutions can be 
stable [2]. 
 
Over the years, the R3BP has gained relevance 
across the globe and several investigators have 
characterized the bodies by shapes, sizes and 
forms. Some have considered whether inclusion 
of some perturbing forces will alter the 
established results of the classical problem. 
Singh and Leke [3] investigated the stability of 
the photogravitational R3BP by characterizing 
the primaries as radiating bodies and having 
variable masses while the existence and stability 
of stationary solutions of the R3BP under the 
effect of the dissipative force, Stokes drag, have 
been carried out by Jain and Aggarwal [4] where 
they observed that there exist two non collinear 
stationary solutions which are unstable. Kumari 
et al. [5] examined existence and stability of 
triangular equilibrium points of the R3BP when 
the smaller primary is a heterogeneous triaxial 
rigid body while a study of five libration points in 
CR3BP under albedo effect was considered by 
Idrisi [6]. Ansari et al. [7] characterized the R3BP 
by taking the primaries as heterogeneous 
spheroids of three layers and the infinitesimal 
body varying its mass. The stability analysis of 
triangular equilibrium points in the R3BP when 
the primaries have Poynting-Robertson drag and 
are enclosed by circumbinary disc, has been 
studied by Singh and Amuda [8] while the 
libration points in the restricted three–body 
problem: euler angles, existence and stability 
was studied by Selim et al. [9]. Recently, Kumar 
and Sharma [10] studied effect of radiation 
pressure on resonant periodic orbits in 
photogravitational R3BP. 
 

There have been few studies of the R3BP that 
took into account oblateness of the infinitesimal 
mass. Singh and Leke [11] have discussed 
motion in a modified Chermnykh’s R3BP in which 
the infinitesimal mass is an oblate spheroid while 
Abouelmagd and Guirao [12] investigated 
analytically the perturbed planar R3BP in the 
case that the three involved bodies are oblate. 
 
Most literature of celestial mechanics is full of a 
number of research papers  in the restricted 
three-body problem, where primaries are either 
homogeneous  spherical or non –spherical 
bodies. However, because some of the celestial 
bodies are stratified, e.g. our Earth is made up of 
three different layers. Therefore, in this paper, we 
carry out a survey of the equilibruim points and 
stability in the R3BP when the bigger primary is a 
radiating body and the smaller one is a 
heterogeneous oblate spheroid having three 
layers with different densities while the 
infinitesimal is an oblate spheroid. The structure 
of the paper is such that section 2 captures the 
dynamical equations of the model while section 3 
and 4 examine position and stability of 
equilibrium points, respectively. Numerical 
illustrations are given in section 5 while the 
conclusion is drawn in section 6. 
 

2. THE DYNAMICAL EQUATIONS 
 

Let 1m , 2m  and 3m be the masses of the bigger, 

smaller primary and the infinitesimal mass, 
respectively.  We suppose that the bigger 
primary is a radiation emitter and the smaller one 
is a heterogeneous oblate spheroid with three 

layers of different densities  321  i

and axes  ii ba ,  3,2,1i , respectively; such 

that the equatorial plane coincides with the plane 
of motion. The infinitesimal mass is assumed to 
be an oblate spheroid which moves under the 
influence of both primaries. Let ),,( zyxO   be 

the Barycentric coordinate system with the line 
joining the primaries taken as the x -axis, while 
the y axis is perpendicular to it, and the z
axis is perpendicular to the orbital plane of the 
primaries. Let the coordinate system rotate with 
angular velocity n  about the z axis as seen in 
Fig. 1. 
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Fig. 1. Model of the R3BP with radiating bigger primary 1m , heterogeneous oblate small 

primary 2m  and oblate infinitesimal mass 3m  

 
Following the methodology of Suraj et al. [13] and Singh and Leke [11], the equations of motion of the 

infinitesimal mass 3m in the model of the CR3BP can be written, as 

 

xUynx   2
 

 

yUxny   2
                                                                                                                         (1) 
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 2,1imi are the masses of the bigger and smaller primary, respectively while n is the mean motion 

of the primaries. 2A and 3A are oblateness coefficient of the smaller primary and infinitesimal mass, 

respectively while 32 ,kk appear because the smaller primary is a heterogeneous oblate spheroid and 

 is the mass parameter while q is the radiation pressure factor of the bigger primary. 

 3,2,1 , iba ii are the axes of the three layers of the smaller primaries while a and b is the 

equatorial and polar radii of the infinitesimal mass, respectively. 
 
3. LOCATIONS OF THE EQUILIBRIUM POINTS 
 
The equilibrium points or particular solutions are the solutions of the dynamical system (1) when the 

infinitesimal mass is at rest. That is, we set 0 zyxyx     in equations (1) to get 
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We shall consider motion and solutions in the xy plane only. 

 

3.1 Collinear Equilibrium Points 
 
The collinear equilibrium points are the solutions of equations (4) when 0 zy . That is we have to 

solve the first equation of (4). To do this we denote the equation by  f x
,
 so that 
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(5) 
   

where 1r x   and 2 1r x     

 
The abscissas of the collinear points are the roots of equation (5). 
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Next, divide the orbital plane Oxy into three parts with respect to the primaries such that ,

and . Therefore, when , implies that  and if this happens, 

then  and so we have from equation (5) that 
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Also, when , we have  and , and so we have 
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Finally, when
x

, we get 
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(8) 

 
Hence, there exists a positive root for each of equations (6), (7) and (8) which give the locations of the 
collinear equilibrium points. We shall obtain them accordingly. 
 
Collinear point L1 
 

Now, in the first partition on the orbital plane, we let 11 1  x and substitute in (6), to get 
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Multiplying throughout by 
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Ignoring products of very small quantities, we get 
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Collinear point 
2L  

 

In this region, 2L  lies between the primaries and so, we substitute 22 1  x in equation (7). 

Following same methodology above, we get 
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Collinear point 3L
3L delete 

 

For this point, since it lies to the right of the primaries, we substitute 33  x  in equation (8). 

Solving, we get 
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We shall explore the polynomials (9), (10) and (11) numerically to determine the roots  3,2,1ii

corresponding to the collinear equilibrium points  3,2,1iLi . 

 

3.2 Triangular Equilibrium Points 
 

The triangular equilibrium points are the solutions of equations (4) when 0z . Therefore, we have to 
solve equations 
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Re-writing first equation of (3) and substituting the second in it, our result yields the equations 
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Now, if all the imposed perturbing forces are relaxed such that 03,2 k , 11 q and 03 A ; equations 

(13) and (14) reduce to the classical case of Szebehely [2], where 121  rr . 
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Since our model modifies the classical case of 
the R3BP, we assume that the modified solutions 
can be expressed as 
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From equations (13), if only linear terms in 

 2,1ii are retained, we get the following 
relations: 
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Substituting equations (3) and (16) in equations 
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Therefore, we have 
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We have obtained equations (18) by retaining 
only linear terms and neglecting second and 
higher order terms and products of the strictly 
small factors. 
 

Finally, solving equations (2) when 0z , we 
obtain the coordinates of the triangular points as 
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Substituting the distances (18) in these equations 
and simplifying, yields the solutions 
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These solutions are denoted by 4L and 5L  and 

form two triangles with the lines joining the 
primaries. Clearly, the points are characterized 
by the mass parameter, radiation pressure of the 
bigger primary, heterogeneity of the smaller and 
oblateness of the infinitesimal mass. 
 
4. STABILITY OF EQUILIBRIUM POINTS 
 
In the study of the stability of equilibrium points in 
the R3BP, usually, for all values of the free 
parameters, the equilibrium points may be stable 
or otherwise. What is required is to take small 
deviations from the equilibrium points by 
displacing the infinitesimal mass a little from rest.  
Once the infinitesimal mass oscillates about the 
equilibrium point, then the point is a stable 
equilibrium point. If however, the infinitesimal 
escapes from the neighborhood of the 
equilibrium point, then the point is an unstable 
location. 
 

Now, let , , where

is a small displacement from the equilibrium point

 00 , yx . Consequently, the variational equations 

of motion and the corresponding characteristic 
equation are respectively: 
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where, ,  and  are second order 

partial derivatives which will be evaluated at the 
equilibrium points. 
 
Now, we can investigate the stability of the 
equilibrium points 
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4.1 Collinear Equilibrium Points 
 

We consider motion around the collinear point 1L . In this case the partial derivatives estimated at this 

point are 
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The second order partial derivatives have been estimated at the collinear point  0,0,0x . 
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Hence, the characteristic equation in the case of the collinear equilibrium point is  
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Now, the stability outcome will depend on the types of roots of the characteristic equation (23) and the 

nature of the roots will be defined by the coefficients  2,1iai . Hence, we shall numerically compute 

these roots in a later section of the paper and then come up with a result that will tell whether motion 
around the collinear equilibrium points is stable or unstable 
 

4.2 Triangular Equilibrium Points 
 
The stability of the triangular points is equally determined by the nature of the roots of the 
characteristic equation (21). To obtain the derivatives computed in this case, we first compute the 
second order partials with the help of equation (12), to get: 
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Now, using equations (18) and (19), we ignore products and retain only linear terms of ik , q1 and

3A , to get the second order partial derivatives computed at the triangular points: 
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Now, substituting equations (24) in the characteristic equation (21) and simplifying, we get 
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The roots of (21) are 
 

 2,14,3,2,1  ii                                                                                                                         (26) 
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  is the discriminant and is a strictly decreasing function of 


 in the interval 








2

1
,0  and has values 

of opposite signs at the end points. Therefore, there exists a value of    , at which the discriminant is 
zero. This value is called the critical mass parameter and it is given by 
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The first term is the Routh’s critical mass                 
value for the classical case and the second term  
is the presence of radiation pressure of the 
bigger primary while the third and last                      
are the effect arising from heterogeneity of                    
the smaller primary and the fact that the 
infinitesimal mass is an oblate spheroid, 
respectively. Evidently, equation (27) is a 

decreasing function of the parameters q ,
2k , 3k

and 3A . 

 
Next, we analyze the stability outcome which 
depends on the nature of the roots (26) and the 
kinds of roots in (26) will depend on the 

discriminant . Thus we consider the nature of 
the discriminant based on the relation between 
the mass ratio   and the critical mass 

parameter C . The roots and stability results are 

as follows: 
 

i. When C 0 the discriminant is positive 

and the roots (26) are all distinct pure imaginary. 
In this case the triangular equilibrium points are 
stable and motion is bounded and defined by two 
oscillatory solutions which can be written 
following Szebehely [2]: 

tAtAtAtA 25241211 sincossincos  
 

 

tBtBtBtB 25241211 sincossincos  
 

 

where
2,12,1 ,BA and 

5,45,4 , BA are the long and 

short periodic terms 
 

ii. When C  , 0 ; two roots are equal 

and the triangular equilibrium points are 
unstable. 

 
iii. When  C the discriminant is negative, 

and the roots are complex with two having 
positive real parts. This induces instability and 
the equilibrium points are unstable. 

 
5. NUMERICAL ILLUSTRATIONS 
 
We have analytically computed the polynomials 
for the positions of the collinear equilibrium 
points. Each of the polynomial should contain a 
real root, each of which gives the locations of the 
collinear points; a case where we can only think 
of a positive real root for each polynomial which 
gives three locations of the collinear points, 
respectively. However, it is pertinent to use 
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numerical means to support the analytical  
efforts. Our numerical illustrations have been 
performed using the software mathematica,             

and we have taken 01.0 for the mass 

parameter, 0.99992 for radiation pressure            
factor of the bigger primary while for the 
heterogeneous spheroid we have used 

7
2 1058302.1 k and 

8
3 1013153.3 k . 

Below in Table1, we compute the locations of 
roots with the help of the polynomials (9), (10) 

and (11) for 06.00 3  A as shown below. It 

can be seen that increasing oblateness of the 

infinitesimal body, the collinear position 
1L  

moves away from the heterogeneous oblate 

spheroid while the same occur for the point 3L  

which drifts away to the right of the radiating 
bigger primary. 
 
From the Table 1, it is seen that there can be up 
to five collinear equilibrium points for 

04.00 3  A  in the presence of radiation 

pressure, mass ratio and heterogeneity of the 
smaller primary. 
 
Next, using equations (19), we numerically 
compute in Table 2 the positions of triangular 

points 4L and 5L  which are defined by the mass 

parameter, radiation pressure of the bigger 
primary, heterogeneity of the smaller and 
oblateness of the infinitesimal mass.  So we also 
take same parametric values as above with

06.00 3  A . For convenience and clarity, in 

Table 2, we also compute numerically the critical 
mass parameter given in equation (27). 
 
Clearly form Table 2, as oblateness of the 
infinitesimal mass increases under the perturbing 
force of radiation and heterogeneous spheroid, 
the infinitesimal mass moves further away from 
the primaries and the critical mass decreases, 
which shows that the region of stable motion is 
decreasing. 

 

Table 1. Collinear equilibrium points for 06.00 3  A when 01.0 , 99992.0q , 

7
2 1058302.1 k and 8

3 1013153.3 k  

 

3A  1L  2L  3L  
0 -1.14681 -0.257278 

0.24031 
0.98997 

0.937204 

0.00001 -1.14684 -0.257256 
0.240282 
0.98998 

0.937208 

0.00015 -1.14732 -0.256945 
0.239886 
0.99005 

0.937263 

0.0005 -1.14847 -0.256165 
0.238894 
0.99023 

0.937403 

0.001 -1.15005 -0.255044 
0.23747 
0.99049 

0.937602 

0.015 -1.17775 -0.219904 
0.1943 
0.997618 

0.937609 

0.02 -1.18427 -0.205102 
0.176857 
1.00009 

0.94501 

0.04 -1.20393 -0.120451 
0.0828447 
1.00962 

0.952496 

0.05 -1.21155 1.0142 0.956129 
0.06 -1.21828 1.01865 0.959692 
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Table 2. Position of triangular points and critical mass for 06.00 3  A when 01.0 , 99992.0q , 

7
2 1058302.1 k and 8

3 1013153.3 k  

 

3A  
x  y  C  

0 -0.489965 0.866005 0.03852 
0.00001  0.866011 0.0385171 
0.00015  0.866092 0.0384759 
0.0005  0.866294 0.0383729 
0.001  0.866583 0.0382258 
0.015  0.874666 0.0341059 
0.02  0.877552 0.0326345 
0.05  0.894873 0.0238062 
0.06  0.900646 0.0208634 

 
Table 3. Equilibrium points and stability results for 01.0 , 99992.0q , 7

2 1058302.1 k ,
8

3 1013153.3 k and 02.03 A  

 
Equilibrium 
points 

Locations 

 x  

Locations 

 y  

C  
Characteristic Roots Nature 

of 
motion 

1L  
-1.18427 0 -  1.01533  2.15622i Unstable 

2L  
0.176857 0 -  31.5959 &  9.91466i Unstable 

21L  
-0.205102 0 -  7.8331 &  18.8756i Unstable 

22L  
1.00009 0 -  0.391167 &  1.01888i Unstable 

3L  
0.94501 0 -  0.810737 & 1.14899i Unstable 

4L  
-0.489965 0.877552 0.0326345  0.282409 i & 0.927494i Stable 

5L  
-0.489965 -0.877552 0.0326345  0.282409 i &  0.927494i Stable 

 
Finally, in Table 3, we put together the positions 
of the possible seven equilibria, the 
corresponding roots in each case and we state 
form of motion around the equilibrium points. As 
seen in Table 3, the four roots for the collinear 

point
1L  are complex and the point is an unstable 

equilibrium point.  For the point
2L , 21L , 22L and

3L  there exist two real roots having opposite 

signs and two imaginary roots. These points are 
all unstable due to a positive root. In the case of 

the triangular points 5,4L  we have C  and 

the four roots are distinct pure imaginary. The 
triangular points are stable. 
 

6. CONCLUSION 
 

In this paper, equilibrium points and stability in 
the photogravitational restricted three-body 
problem with oblateness under a heterogeneous 
spheroid, have been examined when the bigger 
primary is a radiating body and the smaller one is 

a heterogeneous oblate spheroid having three 
layers with different densities while the 
infinitesimal mass is an oblate spheroid. The 
equilibrium points are found and their linear 
stability analyzed. It is seen that under some 
conditions there can be five collinear equilibrium 
points. These points are unstable either owning 
to a complex or positive root. Two triangular 

points exists and are stable provided c 0 . 

However, since c  is a decreasing function of the 
radiation pressure of the bigger primary, 
heterogeneous nature of the smaller primary and 
oblateness of the infinitesimal mass, we 
conclude that the nature of the bodies have 
destabilizing effect and the overall effect is that 
the region of stability around the triangular points 
is decreasing. 
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