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Coinfections of porcine circovirus type 2 (PCV2) and Glaesserella parasuis (G. parasuis) are widely existing in the swine industry
worldwide. However, the mechanisms for this coinfection remain unclear. The aim of this study is to assess whether the
coinfection PCV2 and G. parasuis would affect the inflammatory response and related mechanisms. In this study, BALB/c
mice and RAW264.7 cells were used to study the inflammation and related mechanism caused by the coinfection of PCV2 and
G. parasuis. Coinfection with PCV2 and G. parasuis significantly increased the mortality of mice and led to the development of
more severe lung and spleen lesions compared with single agent infection. Especially, coinfection significantly increased the
bacterial loads in the lungs. Coinfection with PCV2 and G. parasuis can enhance RAW264.7 cell phagocytosis and elimination
to G. parasuis. Cell death rate of cells increased in coinfection was measured with Flow cytometry. Moreover, coinfection led to
the downregulation of the expression of TNFα and IL-8 in comparison with G. parasuis infection, but the maturation of
interleukin-1β (IL-1β) was significantly upregulated. Our study firstly revealed that coinfection of PCV2 and G. parasuis can
increase the phagocytosis of cells to G. parasuis, and LPS in the cytoplasm will induce the maturation of caspase-11 and lead
to the cleavage of Gasdermin D (GSDMD) to cause pyroptosis by noncanonical pathway. The revealing of mechanisms
associated with coinfection with PCV2 and G. parasuis will provide a scientific basis for investigating the synergistic infection
mechanisms between viruses and bacteria.

1. Introduction

Glaesserella parasuis (G. parasuis) is a Gram-negative bacte-
rium, which is an important swine pathogen that causes serious
diseases, characterized by fibrinous polyserositis, polyarthritis,
and meningitis [1]. G. parasuis normally colonizes the upper
respiratory tract of swine, which can disrupt the nasal mucosal
barrier and cause systemic infection in certain conditions [2, 3].
Commonly, G. parasuis could coinfect with other pathogens in
clinical, such as porcine reproductive and respiratory syn-
drome virus (PRRSV), porcine circovirus type 2 (PCV2), and
Streptococcus suis (S. suis), and lead to huge economic losses
in the swine industry worldwide [4, 5]).

PCV2 is a single-stranded, circular, DNA virus; it is the
primary pathogen of porcine circovirus-associated disease

(PCVAD) [6, 7]. Additionally, PCV2 is an important immune
suppression agent, and it is also a crucial coinfecting agent and
increases the risk of infection with other viruses and bacteria
[6, 8–10]. Several studies have demonstrated that the infection
of PCV2 can aggravate secondary or opportunistic infections
in detail [11, 12]. Liu et al. found that G. parasuis serovar 4
infection increased the virus loads of PCV2 in the pig sera
coinfected with PCV2 and G. parasuis and strengthened lung
and lymphoid lesions [13].

Cell death is a fundamental biological phenomenon that
is essential for life forms, which was believed to be the result
of programmed cell death or uncontrolled cell death [14]. In
brief, cells were removed from the tissue in either a pro-
grammed manner by a series of molecular and biochemical
events or in a poorly uncontrolled manner, resulting in
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spillage of cell contents into surrounding tissues and damage
thereof [14, 15]. Apoptosis and pyroptosis were both follow-
ing a programmed series of caspase-dependent events; how-
ever, apoptosis was not affecting normal cells and pyrotosis
was proinflammation [16, 17]. Apoptosis research is common
in PCV2 or G. parasuis infection. In previous studies, macro-
phage apoptosis could be detected in the spleen of PCV2-
infected mice, and it also has been reported that apoptosis
could be one of the causes of lymphopenia [18, 19]. The lipoo-
ligosaccharide of G. parasuis played an important role in apo-
ptosis [20]. Nevertheless, there were few studies on PCV2 or
G. parasuis infection leading to pyroptosis.

Alveolar macrophages (AMs) are the main targets of pul-
monary resistance to infection and play key roles in the first
line of defense in the immune system [21]. AMs participate
in many biological processes, including immune surveillance,
tissue repair, and inflammation responses of the lungs [22,
23]. Recent research demonstrated that AM migration is
impaired during some viral infections, which will easily lead
to secondary bacterial coinfections [24]. Another study showed
that swine influenza virus (SIV) can promote the adhesion and
invasion in lungs of S. suis [25]. Nevertheless, little is learnt
about the pulmonary immune responses and associated mech-
anisms induced by the coinfection of PCV2 and G. parasuis.

In this study, BALB/c female mice were used to study the
effect of interaction between PCV2 and G. parasuis on
increasing pathogenicity. RAW264.7 cell line was used to
reveal the effect of PCV2 infection on the cell phagocytosis
to G. parasuis in vitro. At the same time, caspase-11 activa-
tion and the noncanonical activation of the inflammasome
were confirmed during infections.

2. Materials and Methods

2.1. Virus, Bacteria, and Cell Culture. Virulent PCV2 strain
WG09 (GenBank accession no. GQ845027) used in this
study was kept in our laboratory, and titers were determined
as 106.0 TCID50/mL [26]. G. parasuis serovar 5 strain used in
this study was kept in our laboratory and grown on Tryp-
tone Soy Agar (TSA, OXOID) and Tryptone Soy Broth
(TSB, OXOID) with 5% serum and 0.01% NAD. The por-
cine kidney 15 (PK15) cells and RAW264.7 cells (stored in
our lab) used in this study were maintained in Dulbecco
Modified Eagle Medium (DMEM) (Gibco, USA) supple-
mented with 10% fetal bovine serum (FBS, Gibco, USA)
and incubated at 37°C with 5% CO2.

2.2. Animal Infection Experiment. Twenty 8-week-old SPF
BALB/c female mice (purchased from the Comparative Medi-
cine Center of Yangzhou University) were randomly divided
into four groups and raised in separate facilities, each with 5,
the groups including the PCV2 infection group, the G. parasuis
infection group, the coinfection group, and the PBS control
group. Themice were inoculated with 0.2mL PBS in the control
groups and PCV2 (106.0 TCID50/mL) intraperitoneally (IP) in
the experimental groups [27]. After 7 days of infection, themice
of the G. parasuis single group and the coinfection group were
inoculated with G. parasuis (4:21 × 109CFU, per mouse). After
infection, clinical symptoms, including depression, huddling,

ruffled fur, and respiratory distress, were recorded until the
end of experiment. When the mice were not responsive or
recumbent, they were euthanized.

2.3. Histopathological Analysis. When the experimental mice
were euthanized, the lung and spleen tissues of each group
were freshly collected and fixed in 4% paraformaldehyde
and then embedded with paraffin. 5μm thin tissue sections
were prepared, fixed on the glass, and then HE staining
was performed for subsequent light microscopy.

2.4. Cell Infection Experiment. RAW264.7 macrophage cells
were infected initially with PCV2 for 24 h, and then the cells
were infected with G. parasuis at an MOI of 100 for 1 h.
Then, nonspecifically attached bacteria were removed by
washing three times with PBS. Complete growth medium
(including 100U/mL penicillin G and 100μg/mL gentamy-
cin) was added to each well, and plates were incubated for
1 h to kill extracellular G. parasuis. Then, the medium was
replaced with fresh complement DMEM containing 10%
FBS. The samples for supernatants and lysates were collected
at 12 h postinfection. Simultaneously, cells were treated with
10μM Nigericin (NGC) (MedChemExpress) at 1 h as posi-
tive control. Nigericin is an inductor of the canonical way
of pyroptosis by caspase-1 [28].

2.5. Cell Death Test. Lactate dehydrogenase (LDH) release was
evaluated using an LDH Assay Kit (Beyotime, Shanghai,
China) according to the manufacturer’s instructions. LDH
release reagent treatment (1 : 10 dilution, 1 hour) was used as
a positive control to test maximum LDH release according to
the manufacturer’s protocol. The optical density was measured
spectrophotometrically at 490nm on a microplate reader.

2.6. Cytokine Expression. The concentration of cytokines in
the cell supernatant infected with either PCV2 or G. parasuis
was determined using ELISA Kit. And the concentration was
quantitated based on the standard curves. IL-1β ELISA Kit
(absin, abs520001), TNFα ELISA Kit (absin, abs552204),
IL-10 ELISA Kit (absin, abs520005), and IL-8 ELISA Kit
(Fcmacs Biotech) were used.

Expressions of other cytokines were measured using
real-time quantitative PCR (Applied Biosystems, Thermo
Fisher Scientific) and calculated using 2−ΔΔCt, where CT is
the cycle threshold. PCR primers for different cytokines are
listed in Table S1.

2.7. Annexin V-FITC/PI Staining for Cell Death. RAW264.7
cells were grown in 12-well plates and treated as previously
described. Annexin V-FITC/PI Apoptosis Detection Kit
(Vazyme, A211-01) was used for flow cytometry (FC) and
fluorescence microscope, and the steps were done according
to the instructions. The result analysis was by FlowJo X.

2.8. Western Blot. The cell lysates and supernatants were
obtained using RIPA Lysis Buffer containing proteinase inhib-
itor (Beyotime, Shanghai, China) and acetone precipitation,
respectively; the concentration of total proteins was deter-
mined using bicinchoninic acid (BCA) protein assay (Beyo-
time, Shanghai, China). The protein samples were subjected

2 Cellular Microbiology



to 12.5% SDS-PAGE, and then, they were transferred onto NC
membranes (Millipore). After blocking with 5% skim milk for
2h, the membranes were immunoblotted with primary anti-
bodies overnight at 4°C and then incubated with secondary
antibodies for 45min. Target proteins were exposed with
SuperSignal West Pico PLUS (Thermo Fisher Scientific). The
band intensity was scanned with ImageJ software, and β-actin
was used as housekeeping gene. Primary antibodies include
caspase-11 (1 : 1000, Abcam, ab22684), cleaved caspase-1
(1 : 1000, Cell signaling technology, 89332), GSDMD (1 : 800,
Abcam, ab219800), and β-actin (1 : 1000, Santa Cruz Biotech-
nology, sc47778). Secondary antibiotics include goat anti-
mouse IgG (H+L) (1 : 10000, Thermo Fisher Scientific, 31430)
and goat anti-rabbit IgG (H+L) (1 : 1000, Beyotime, A0208).

2.9. Indirect Immunofluorescence Assay. PCV2-infected cells
were washed with PBS, fixed with 4% paraformaldehyde for
30min. Fixed cells were incubated with mouse anti-PCV2-
cap protein monoclonal antibody (1; 500, preparation in
our laboratory) at 37°C for 1 h, washed three times with
PBST (0.05% Tween-20 in PBS, pH7.4), and further incu-
bated with goat anti-mouse IgG (H+L)/FITC (1 : 50, Bioss,
bs0296G-FITC) at 37°C for 1 h in the dark. DAPI was used
in the cell nucleus. After three washes with PBST, infected
cells were quantified using microscopy.

2.10. Statistical Analysis. All statistical analysis was com-
pleted using GraphPad software. Significance was calculated
using one-way analysis of variance (ANOVA) with Tukey’s
post hoc test. p value of less than 0.05 was determined to
be statistically significant.

3. Results

3.1. Coinfection of PCV2 Virus and G. parasuis Bacterium
Increases Mouse Mortality. The survival rates of mice for G.
parasuis infection and coinfection groups are 80% and 40%,

respectively. However, the death of mice was not observed in
the control and PCV2 infection groups at the end of the exper-
iments (Figure 1(a)). Additionally, the bacterial loads in the
lungs were determined, and as shown in Figure 1(b), the bac-
terial loads in the lungs from the PCV2 and G. parasuis coin-
fection groups were significantly (∗∗p = 0:0022) increased
compared with G. parasuis single infection.

3.2. Coinfection of PCV2 and G. parasuis Aggravates Lung and
Spleen Injury. Postmortem observations found more tissue
lesions in the mice coinfected with the virus and bacteria, espe-
cially for the lungs and spleen. The lungs and spleens were sub-
jected to histopathological examination; the results showed only
slight bleeding in the lungs and was observed for PCV2 or G.
parasuis infection. However, more lung lesions were observed
with destroyed alveoli, thickened alveoli septum, and pulmo-
nary congestion in the coinfection group (Figure 2(a)). In addi-
tion, the lesions of spleens were not obvious in the postmortem
observations, but pathologic observations showed that there
were many inflammatory cells infiltrating the spleens in the
coinfection group and showed severe lymphocyte depletion
and disintegration (Figure 2(b)).

3.3. Effect of Coinfection on Phagocytosis and Clearance by
RAW 264.7. In order to confirm whether RAW 264.7 could
be infected by PCV2, the cells were infected with PCV2 at a
MOI of 1 for 24 h. The mock-infected cells were used as neg-
ative control. The cells were then fixed with and incubated
with specific antibody against PCV2 and viewed with a fluo-
rescence microscope (Figure S1).

To reveal the effect of coinfection on phagocytosis and
clearance by RAW 264.7, a phagocytosis and cell clearance
assays for the cells of G. parasuis were performed. The
results showed that the phagocytosis of RAW 264.7
coinfected with two agents was significantly increased (3.2
folds, ∗∗∗p < 0:0001) than those infected by G. parasuis
(Figure 3(a)). The number of bacteria in the RAW264.7 cells
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Figure 1: Survival rate of experimental mice and bacterial loads in the lungs. (a) The BALB/c mice were inoculated with 0.2mL PBS or
PCV2 (2 × 105:0 TCID50/mouse) for 7 days, and then, the mice were inoculated with G. parasuis (4:21 × 109 CFU/mouse). Mice used as
control were treated only with PBS at both time points. (b) Bacterial loads in the lungs. Groups of mice were infected prior with either
PCV2 or PBS for 7 days and then challenged with G. parasuis (the mice were euthanized at 12 h), and the number of bacteria in the
lungs was recorded using CFUs.
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was recorded at different time points following infection,
and this result showed that the elimination rate of bacteria
was increased in the coinfection group (Figure 3(b)).

3.4. Regulation of Cytokine Expression in the RAW 264.7 Cells
Coinfected with PCV2 and G. parasuis. The expressions of
some selected inflammation-relevant genes were analysed
after different infections. The groups for PCV2 andG. parasuis
coinfection and single G. parasuis infection induced the
expression of TNF-α, IL-8, IL-10, and IL-1β increased at pro-
tein levels (Figure 4). However, a significant downregulation
of TNF-α and IL-8 levels was detected after coinfection at
12h compared with the group infected only with G. parasuis

and PCV2 (Figure 4(a)). IL-10 expression had no significant
differences being found between the G. parasuis infection
and coinfection at 6h or 12h. IL-1β expression was higher
in the coinfection group at 12h. Results of measurement of
mRNA levels are in the supplementary material (Figure S2).

3.5. Pyroptosis of RAW264.7 Associated with Coinfection of
PCV2 and G. parasuis. Cell viability results showed that coin-
fection caused more cell damage by increasing the release of
LDH (Figure 5(a)), which may be associated with inflamma-
tory responses of cells. To explore the relationship between cell
viability and inflammatory response of RAW264.7 cells, the
secretion of mature IL-1β into the cell supernatant was
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Figure 2: Microscopic observations of lungs and spleens. After 12 h of infection with G. parasuis, the mice were euthanized. The lungs and
spleens were isolated, fixed, stained with HE, and observed by microscopy (scale bar is 50μm). (a) Lungs showed only slight bleeding and
were observed for PCV2 or G. parasuis infection, but there were destroyed alveoli, thickened alveoli septum, and pulmonary congestion in
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Figure 3: Phagocytosis and clearance of G. parasuis by RAW 264.7 cells to coinfection with PCV2. (a) RAW264.7 cells were initially infected
with PCV2 (MOI = 1) for 24 h and then infected with G. parasuis (MOI = 100) for 1 h, and the medium was replaced with fresh complement
DMEM containing penicillin and gentamicin for 1 h, and then, the cells were washed, lysed, and streaked onto TSA for CFU count. (b) The
treated RAW264.7 cells were lysed and streaked onto TSA for CFU count at 2 h, 4 h, 6 h, and 8 h, respectively.
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monitored. We found that G. parasuis infection and coinfec-
tion can activate mature IL-1β secretion (Figure 5(b)), which
is positively associated with LDH release at 12h.

3.6. Coinfection of PCV2 and G. parasuis-Induced Cell Death.
Annexin V-FITC/PI was used for estimating better the rela-
tive contribution of the different cell death mechanisms. For
flow cytometry analysis, four rectangle gates depended on
the control and positives groups. The results showed that
6.94% cells after NGC treatment (Figure 6(d)), 5.35% cells
after PCV2 infection (Figure 6(a)), 5.92% cells after G. para-
suis infection (Figure 6(b)), and 4.95% cells after coinfec-
tions (Figure 6(c)) were in early apoptosis (FITC-positive),
and the proportion of late apoptotic and necrotic cells (FITC
and PI double positive) was 12.6% (Figure 6(d)), 12.7%
(Figure 6(a)), 11.4% (Figure 6(b)), and 11.8% (Figure 6(c))
in each of these groups. In addition, the single positive rate
of the cell nucleus (PI positive) in the PCV2, G. parasuis,
coinfection, and NGC groups was 3.90% (Figure 6(a)),
5.37% (Figure 6(b)), 6.82% (Figure 6(c)), and 23.7%

(Figure 6(d)), respectively. These results were similar to fluo-
rescence determined (Figure S3).

3.7. Caspase-11 Activation and GSDMD Lysis. More bacteria
were phagocytized in the group coinfected with PCV2 and G.
parasuis than that in the group infected with G. parasuis only,
which would lead to more cytosolic LPS in the coinfected cells.
As is well known, cytosolic LPS was sensed by caspase-11 dur-
ing Gram-negative bacterial infections [29]. To test whether
caspase-11 is activated by G. parasuis, caspase-11 expression
and cleavage were identified bywestern blotting.We found that
the cleavage of caspase-11 was significantly increased by coin-
fection (Figure 7). NGC did not affect the expression and acti-
vation of caspase-11.

To determine whether coinfection could affect the activa-
tion of the noncanonical inflammasome signaling pathway,
the expression of cleavage GSDMD was detected by western
blot. As shown in Figure 8, coinfection could significantly
upregulate cleavage GSDMD in RAW264.7 cells. NGC also
induced the expression of cleavage GSDMD. This result
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Figure 4: The protein levels of some inflammation-related cytokines in RAW264.7 after infection. RAW264.7 cells were infected prior with PCV2
(MOI = 1) for 24 h and then infected withG. parasuis at anMOI of 100 for 1 h. After treatment with penicillin and gentamicin for 1 h, the cells were
replenished with complete medium and were further cultured; then cell culture supernatant was collected at 6 h and 12h. (a) TNFα expression
level, (b) IL-8 expression level, (c) IL-10 expression level, and (d) IL-1β expression level (∗∗∗p < 0:001, ∗∗p < 0:01, and∗p < 0:05).
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indicated that coinfection could enhanced pyroptosis by the
noncanonical inflammasome signaling pathway.

4. Discussion

Coinfection of PCV2 andG. parasuis is a common clinical inci-
dent associated with significant economic losses to the swine
industry [10, 30, 31]. However, PCV2 infection is easy to be
ignored or underestimated for mainly causing asymptomatic
or mild clinical signs by itself [6].G. parasuis is an opportunistic
pathogen that colonizes the upper respiratory tract and typically
complicates infections by other primary pathogens, worsening
the production performance [1, 32]. To date, the synergistic
infection mechanisms between PCV2 and G. parasuis have
not been well studied. BALB/c mice and RAW264.7 cells are
the common and convenient models for studying PCV2 infec-
tion [27, 33]. Despite BALB/c mice being regarded as an inade-
quate model for virulence of serovar 5 strain ofG. parasuis [34],
the fact does not affect the relevance of the reported data
because the mechanism was studied, which may be indepen-
dent from the virulence of G. parasuis. In this study, the results
of BALB/c mice infected with PCV2 and G. parasuis demon-
strated that PCV2 and G. parasuis have synergistic interactions
in pathology and PCV2 infection can increaseG. parasuis prop-
agation in the lungs. Moreover, coinfection enhances the activa-
tion of caspase-11 and cleavage of GSDMD, which is associated
with pyroptosis via the noncanonical inflammasome signaling
pathway in vitro.

The most significant microscopic lesions in PCV2-
associated infected pigs are in lymphoid organs, and the spleen
is the largest secondary lymphoid organ in the body, which
contains large number of lymphocytes [3, 18, 35]. Therefore,
the spleen was observed, and the follicles of the spleen showed
severe lymphocyte depletion and disintegration in the coinfec-
tion group but not in other groups. This is probably due to the
enhanced pathogenicity of coinfection. The previous study
showed that coinfection of PCV2 andHPS4 (G. parasuis) could

decrease the number of lymphocytes [13], and the lesions of the
spleen might also be the cause of the reduction of lymphocytes.
Monocyte/macrophage lineage cells are major target cells of
PCV2 [36]. Bacterial lipopolysaccharide (LPS) induced PCV2
replication in swine alveolar macrophages [37]. Hence, we also
examined the effects of infection in lungs by microsection and
found that coinfection could lead more serious lung injury.

Lung inflammation caused by pathogenic infections is often
accompanied by overexpression of various cytokines, which
leads to severe lung damage and high mortality [38, 39]. Cyto-
kines play a very complex role in pathogen infection [40]. As
shown in our study, the cytokine IL-1β was highly expressed
in coinfection at 12h. However, RAW 264.7 cells coinfected
with PCV2 and G. parasuis decreased the expression of TNFα
and IL-8 cytokines compared with cells infected with G. para-
suis at 12h. Downregulation of proinflammatory cytokine
expression in RAW264.7 cells is similar to that of alveolar mac-
rophages (PAMs) coinfected with porcine reproductive and
respiratory syndrome virus (PRRSV) and G. parasuis [41].
These results may suggest that the immunological responses
to bacterial infection in the coinfected group are downregulated,
which affects the recruitment of other immune cells [42].

Pyroptosis is a highly specific type of inflammatory pro-
grammed cell death that is different from necrosis or apoptosis
[43, 44], and it is regulated by caspase-1 dependent or indepen-
dent mechanisms [44]. Caspase-1 is activated upon various
infections, belonging to the inflammatory caspase group, which
distinguishes pyroptosis from apoptosis [45]. In caspase-1-
independent mechanism, cytosolic LPS (from Gram-negative
bacteria) is recognized by caspase-11 rather than caspase-1 in
mouse cells. Besides that, these inflammatory caspases directly
cleaved GSDMD and induced pyroptosis. The N-terminal frag-
ment also activates the NLRP3 inflammasome and caspase-1-
dependent maturation of IL-1β. G. parasuis has been shown
to activate caspase-1 and NLRP3 through toll-like receptor
[38]. In this study, we removed the G. parasuis after 1h infec-
tion and collected the samples at 12h; the activation of
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Figure 5: IL-1β and LDH release. LDH release (a) and IL-1β expression (b) by RAW264.7 cells coinfected with PCV2 and G. parasuis in the
comparison with those infected with PCV2 (MOI = 1) and G. parasuis (MOI = 100) and stimulated with 10μM Nigericin (NGC) for 1 h
(∗∗∗p < 0:001, ∗∗p < 0:01, and∗p < 0:05).
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Figure 6: Coinfection of PCV2 and G. parasuis-induced cell death. (a) PCV2 24h infection group. (b) G. parasuis 12h infection group. (c)
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caspase-1 was not significant between theG. parasuis group and
the coinfection group (Figure S4); however, there is difference
between the G. parasuis and coinfection groups in expression
of cleavage GSDMD, so other reasons should be further
considered. In this study, the number of G. parasuis
phagocytized by the cells increased significantly after the
PCV2 preinfection. This suggested that LPS in the cytoplasm
was also increased. The noncanonical inflammasome,
triggered pyroptosis by activating caspase-11, is related to LPS
in the cytoplasm [46]. This reminds us coinfection may cause
cell death by caspase-1-independent way. Therefore, we tested
the cleavage fragment expression of GSDMD, and the result
showed that the cleavage of GSDMD in the coinfection group
significantly increased. So, we can make a conclusion that
coinfection can cause pyroptosis of cells, which may be
associated with more severe systemic inflammation of pigs
coinfected with PCV2 and G. parasuis compared with single
infection.

We mainly focused on the effect of secondary G. parasuis
infection with PCV2 preceding infection. The success of this
study laid an important theoretical basis and provides neces-
sary experimental means for discussing the secondary infec-
tion of other pathogens caused by PCV2 infection and also
provided an important theoretical basis for the scientific
and effective prevention and control of PCVAD and Gläs-
ser’s disease.

5. Conclusion

We can conclude that coinfection of PCV2 and G. parasuis
can increase the phagocytosis of cells to G. parasuis and cell
death. LPS (from G. parasuis) in the cytoplasm will induce
the maturation of caspase-11 and lead to the cleavage of
GMDMD to cause pyroptosis. As it is well known that pyrop-
tosis is positively associated with inflammation responses. Our
study revealed for the first time that a more severe disease is
caused by the combination of PCV2 and G. parasuis infec-
tions, which increases inflammation by upregulation of non-
canonical pathway.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
And the data presented in the manuscript is available as part
of this manuscript and as supplementary information.
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