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ABSTRACT 
 

Agbaou is one of the most recent gold mine exploitation sites in Côte d’Ivoire. Little studies are 
discussed on the geochemical baseline concentration of trace metals in the wetland sediments 
around Agbaou gold mine. The main objectives of this study were to establish geochemical 
baseline values and to assess the pollution status of antimony (Sb). The geochemical baseline 
concentration of Sb (GBCSb) was estimated using linear regression method. In this study, total Sb 
concentration was analysed in sediment (10 sediment samples) collected around Agbaou gold 
mine site. The average Sb concentration was 5.63 ± 2.50 µg.g

-1
 ranging from 2.50 to 11.3 µg.g

-1
. 

The spatial distribution of Sb showed a tendency to accumulate near gold mine site. Moreover, the 
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GBCSb (5.72 µg.g
-1

) was slightly higher than the average concentration found in sediments. GBC of 
Sb was used to calculate the anthropogenic contribution rate (R) which exhibited a positive value 
(R > 0) for all samples, indicating that the sediments were influenced by gold mining activities. Due 
to lack of local baseline value in the study area, the GBCSb obtained could be used as reference 
value for Sb contamination level assessment in the sediments.  
 

 
Keywords: Antimony; geochemical baseline; gold mine; sediment; anthropogenic contribution. 
 

1. INTRODUCTION  
 
Gold mining activities are classified among the 
main sources of heavy metals in environment [1]. 
Through processing, milling and disposal tailings 
a considerable number of gases, aerosols and 
particulate matter containing metals that can be 
fixed by sediments [2]. Sediments polluted by 
heavy metals can pose direct harm to benthonic 
organisms, plants and human health. Heavy 
metals in sediments can be released into 
overlying water by reactivation and then affect 
the health of aquatic ecosystem and humans 
which are at the top of food chain [3]. Among 
trace metals, antimony (Sb) and its compounds 
are matter of concern since trace metals 
exposure can result in acute toxicity effects on 
the skin, eyes, lungs, intestines, stomach, liver, 
kidney, and heart [4]. Identified as a toxic 
pollutant, U.S. Environmental Agency (USEPA) 
[5] and European Union (EU) [6] Sb induced 
priority interest in many countries. Antimony 
contamination levels in soil/sediment is mainly 
assessed using index evaluation methods [7,8]. 
Whereas, these contamination levels result vary 
considerably with background concentration. 
Furthermore, the conventional background (e.g., 
metal concentrations in the crust, preindustrial 
concentrations) does not consider the natural 
variation of metals across regions [9,10]. In fact, 
a geochemical baseline levels have been used 
as reference values in assessments of the 
degree of pollution based on sediments [11]. 
Linear regression with inert elements (Mn, Fe, or 
Al) that are not influenced by anthropogenic 
activities can be used to define geochemical 
threshold. 
  

In Côte d’Ivoire, several widespread studies are 
focused on sediments and biota contamination 
by trace metals. Overall, these studies indicated 
that sediment collected in urban area [12] in gold 
mining area [13] and in agricultural areas 
(Ouattara et al., 2019) were obviously 
contaminated by arsenic, cadmium and mercury. 
The upper continental crust (UCC) concentration 
established by Wedepohl [14] which reflect the 
average content of the element in Earth’s crust, 

used as background values in these studies, 
does not account for the significant 
anthropogenic influence on the geochemical 
processes occurring in the specific studied areas. 
Despite, several studies conducted in different 
regions of the country to estimate contamination 
levels, no study has yet discussed the 
geochemical baseline concentration in sediment 
impacted by gold mining exploration. The main 
objective of this study was to estimate Sb 
contamination level in sediment and geochemical 
baseline value using statistical methods.  
 

2. MATERIALS AND METHODS  
 

2.1 Study Area 
 

Agbaou village (06 08 °N, 05 11°W) is located in 
central southern of Côte d’Ivoire is a sub-
Saharan nation in southern West Africa. The 
study area was carried out in wetlands around 
the Agbaou gold mine, which the exploitation 
permit covers an area of 334 km

2
. The geology 

dominated by the Archean-Proterozoic man 
Shield, which forms the southern half of the 
larger West African Craton, which makes it a 
mining area. Gold occurs in mesothermal 
auriferous sulfide (pyrite + pyrrhotite) 
assemblage associated with quartz veins 
(Technical report, 2012). Started in the third 
quarter of 2013, the operations consist mainly to 
open pit mining and gravity/CIL facilities, with an 
average gold mined grade estimated of 1.97 g/t 
Au. The climate is equatorial, with average 
annual temperature range between 21 and 33°C 
and the precipitation reaching up to 1900 mm. 
The study area is drained by Bandama River. 
 

2.2 Sampling and Chemical Analysis 
 

A total of 10 top 0 – 5 cm sediment samples 
were collected during summer and winter periods 
from February to December in 2015 (Fig.1). In 
order to take the local variability into account, 
each sample (300 g) was made of five sub-
samples collected using a Van Veen stainless 
steel grab (with an area of 0.02 m

2
). Samples 

were then put into ice bags and transported to 
the laboratory, stored in a deep-freeze unit 
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before the drying procedure. Sediment samples 
were air-dried at room temperature, ground with 
an agate mortar to pass through a 63 µm sieve 
and stored in polyethylene zip-type bags for 
further analysis. All sampling devices were 
cleaned by rinsing with pure water and kept in 
0.1 M HNO3 (68%, Fischer Scientific) for several 
days before sampling. 
 
Sediment samples (0.5 g) were digested in 
triplicate with aqua regia (HNO3: HCl; 3:9; v/v) in 
a microwave system (Milestone Ethos 1 
microwave, Shelton, US) following Method 3051 
A [15,5]. The Sb, Al and Fe concentrations in the 
digested sediment samples were analyzed using 
inductively coupled plasma-optical emission 
spectrometer (ICP OES Icap 6200, Termo 
Fisher, Cambridge, UK). Accuracy and precision 
of the analytical procedures were evaluated 
through the analysis of the certified reference 
material CRM CNS 301-04-050 (Sigma-Aldrich; 
Missouri, U.S.A) for freshwater sediment. The 
measured concentrations fell within the range of 
certified values, and the recoveries varied 
between 95% and 110%. Arcgis 10.2.1 software 
as used for Sb  
 

2.3 Geochemical Baseline Concentration 
(GBC) of Sb in Sediments 

 

GBC concentration has been widely applied to 
differentiate between anthropogenic and natural 
source concentrations of trace metals in 
sediments or soils [16,8,17]. The GBC 
calculation requires a normalization method base 
on linear regression equation obtained from the 
correlation of concentration between the element 
in question (in this case, Sb), and a conservative 
reference element [18]. This study used inert 
elements (Al and Fe) reference. The 
geochemical baseline model was defined by the 
following equation:  
 
                                 (Eq.1) 

 

Where     and        are the concentrations of 
Sb and of the inert element (Al and Fe), 
respectively, while   and   are the regression 
constants.  
 

In the scatterplot described by Eq. (1), data 
within the 95% confidence limit were 
characterized as naturally sourced. Data outside 
the 95% confidence limit were characterized as 
having anthropogenic sources [16]. Data from 
the anthropogenic sources were removed, and a 
linear regression was fitted to the remaining data 
from natural sources with new regression 

constants (c and d). We subsequently arrived at 
the following equation:  
 

                                    (Eq. 2) 
 

Where     is the GBCSb (µg/g) and         is the 
average concentration of the inert element 
sample inside the 95% confidence limit (µg/g) 
and c and d are the new regression constants. 
Using the average concentration of remaining 
data for inert element, the naturally sourced Sb 
concentration was obtained. This value was 
defined as the GBC value of Sb.  
 

2.4 Anthropogenic Contribution of Sb 
Calculated by GBC 

 
According to previous study, the geochemical 
baseline can also be used to calculate the 
influence of anthropogenic activities in the 
various sampling using the GBC method [17,18]. 
Therefore, the contribution rate (R) of 
anthropogenic input on the Sb source in the 
sediment from Agbaou gold mine, was calculated 
as follows (Eq.3) 
 

       
                

         
        (Eq.3) 

 

Where        and           are the concentrations 
(in µg.g

-1
) of Sb at each sampling point, and GBC 

concentration (µg.g
-1

) at each sampling site, 
respectively. If R > 0, it indicates anthropogenic 
input; R ≤ 0, it indicates natural source.  
 

2.5 Statistical Analysis  
 

Statistical analysis was performed using 
STATISTICA (ver. 7.0) packages significant 
Pearson’s (r) correlation coefficients were 
determined and mean metal concentration was 
compared using one-way analysis of variance, 
ANOVA, at 5% significance level, after testing for 
normality of the data. 
 

3. RESULTS  
 

3.1 Concentration Level of Antimony in 
Sediment  

 

The concentrations of Sb in sediments were 
presented in Table 1. Sb concentrations varied 
from 2.5 µg.g

-1
 to 11.3 µg.g

-1
. The average 

concentration of Sb in sediment was 5.63 ± 2.50 
µg.g

-1
. The highest concentration was found at 

A4 sampling sediment point, which was enclosed 
to the gold mine site. Whereas, the lowest 
concentration of Sb was recorded at A7 sampling 
point.  
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Fig. 1. Study and sampling points location 
 

Table 1. Sb concentrations in sediment collected around Agbaou gold mine 
 

Sampling points Sb concentrations (µg.g)
-1

 

A1 6.02 
A2 7.10 
A3 8.00 
A4 11.3 
A5 4.90 
A6 4.77 
A7 2.50 
A8 5.10 
A9 3.70 
A10 2.90 
Mean 5.63 
SD 2.50 

SD : the standard deviation 
 

3.2 Spatial Distribution of Antimony 
  
Antimony spatial distribution map was outlined in 
Fig.2. It appears clearly that the higher content of 
Sb was found at sampling points near of the gold 
mine. Whereas, beyond gold mine equipment, 
Sb concentrations in sediment decrease 
significantly.  
 

3.3 Anthropogenic Contribution of Sb 
Calculated by GBC 

 
The GBC of Sb (GBCSb) and its anthropogenic 
distribution were then calculated. The principle 
selection of the inert elements was as follows : 

(1) the inert element was significantly correlated 
to the naturally occurring concentrations of the 
elements of interest ; (2) the reference element 
was not added or only added in the natural 
quantity by anthropogenic sources ; (3) the 
reference  element  was   stable and   not   
subject to environmental influences such as 
reduction/oxidation, adsorption/desorption, and 
other diagenetic processes ; and (4) the 
concentration of the reference element could be 
accurately determined quantitatively [19]. In this 
study, the    relationship   among   the   two    
inert elements (Al and Fe) and Sb   
concentrations   in the sediments are presented 
in Fig. 3. 
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Fig. 2. Spatial distribution of Sb concentration in sediment 
 

 
 

Fig. 3. Inert elements screening and establishment of geochemical baseline concentration of 
Sb in sediment 
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The r value of Al (r = 0.6660) obtained was 
higher than the one of Fe element (r = -0.6636). 
According to principle of selection above, Al was 
chosen as the inert (reference element) to 
evaluate the GBCSb values in sediments. Based 
on the method presented previously, the 
sampling points outside the 95% confidence limit 
were characterized as anthropogenic sources 
and were removed and the remaining data were 
used to determine the GBCSb. In terms of above 
Equation (2), a value obtained for GBCSb was 
5.72 µg. g

-1
 which was approximate to the 

average of Sb concentration in sediment (5.63 ± 
2.50 µg. g

-1
). This suggested a slight influence of 

anthropogenic sources on the Sb content in 
sediments. 
 
According to Equation (3), the average 
contribution of Sb was (252%), which suggested 
that the Sb in sediment was mainly originated 
from anthropogenic source. Highest 

anthropogenic contribution values (400%), was 
exhibited in sediment from samples A4, 
indicating that anthropogenic input was present 
in this sample. 
 

3.4 Statistical Analysis  
 
The Pearson correlation coefficients for Sb 
concentration and previously physicochemical 
parameters (total organic carbon (TOC) content, 
clay+ silt and pH) in sediments from Agbaou gold 
mine are presented in Pearson matrixes below 
(Table 2).  
 

Pearson statistical analysis indicated negative 
relationship between Sb concentration and TOC 
and Clay + silt (p < 0.05), whereas Sb 
concentration showed weak but positive 
correlation with pHH2O. This probably indicates 
that Sb distribution in sediment was not 
determined by TOC and fine grain size. 

 

 
 

Fig. 4. Anthropogenic contribution of Sb in sediment collected around Agbaou gold mine 
 

Table 2. Correlation matrix for Sb concentrations, TOC and Clay+silt 
 

  Sb Clay + silt pH H2O TOC 

Sb  1    
Clay + silt -0.06 1   
pH H2O 0.39 -0.76 1  
TOC -0.39 -0.40 0.40 1 
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4. DISCUSSION  
 

In current study, Sb baseline concentration was 
determined with geochemical baseline 
concentration in sediment collected around 
Agbaou gold mine. Agbaou gold mine exploration 
and commercial exploitation were started in 2012 
and remain active. Unfortunately, the lack of 
“natural background” that strictly refers to the 
pristine geochemical composition does not exist, 
and forced researchers to use upper continental 
crust (UCC) concentration determined by 
Wedepohl [14] as natural background 
concentration value for trace metals. The Sb 
concentrations were less than the ones recorded 
in sub-regions. Indeed; Sb concentrations 
reported in Ghana (6.88 ± 0.38 µg/g); Nigeria 
(20.2 µg/g) and, South Africa (11±6 – 24±7 µg/g) 
[20-22]. gold mining areas. The low levels of 
antimony might be that tailings rain-washed into 
the water bodies have low levels or no antimony. 
The mining activities may probably release 
extremely low levels of antimony into the 
environment, and that the sediment are 
unaffected by the mining activities with regards to 
antimony release. Secondly, the relatively low 
level of antimony is probably since anthropogenic 
antimony inputs are either very low or non-
existent. Nevertheless, the spatial distribution 
showed that the hot spots of Sb concentration 
were observed around the gold site, where it 
could have been transferred to the river by water 
erosion process. Similarly, Sb pattern distribution 
was observed near mining areas in Iran [23], 
Bolivian [24] and Macedonia [25]. 
  

The regression analysis is often used to 
construct geochemical baseline, for it can the 
influence of anthropogenic and reveal the 
geochemical natural background concentrations 
of elements [26-28]. In this study, the 
geochemical baseline concentration of Sb was 
5.72 µg. g

-1
, and positive anthropogenic 

contribution (R > 0) was found. These suggested 
that Sb in sediment from Agbaou gold mine 
demonstrate high anthropogenic influence. 
Whereas, the slight anthropogenic influence was 
observed somewhere. In overall, due to the lack 
of antimony geochemical baseline value for the 
study area, our result (GBCSb = 5.72 µg. g

-1
) 

could be used as comparative reference to 
explore the environmental quality or evaluate the 
disturbance (natural or anthropogenic) degree in 
the future. 
 

Although geochemical baseline study was 
approved method, our study present certain 

limitations. The sample size was very small and 
a statistically appropriate number of sediment 
samples from impacted and control sites should 
be included. On the other hand, certain 
limitations such as diversity in the sampling 
media and information on the concentration 
levels of organic compounds should be consider 
in further research.  
 

5. CONCLUSION  
 
This study aimed to identify the possible pollution 
source of antimony in the sediment collected 
near Agbaou gold mine site based on the metal 
geochemical baseline calculated by statistical 
methods. The average concentration of Sb was 
5.63 ± 2.50 µg. g

-1
, which was less than the ones 

reported in sub-regions. The spatial distribution 
of Sb in sediment confirmed that Sb 
concentration decreased as one further away 
from the gold mine. However, Pearson’s 
correlation between Sb contents and physico-
chemical parameters (TOC, clay+silt, and pH) 
revealed that Sb distribution in sediment was not 
affected by fine grain size particles and the 
organic carbon contents. The geochemical 
baseline concentration (GBC) of Sb in surface 
sediment was 5.72 µg.g

-1
. The anthropogenic 

contribution rate reaches up to 400 %, indicating 
high anthropogenic originate inputs.  
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