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ABSTRACT 
 
The study of the Elliptic Restricted Three-Body Problem (ER3BP) in our present work  considered 
the �� − ����� coordinates taken oblateness up to zonal harmonics ��  for Gliese 667 and Sirius 
systems. The  �� − ����� coordinates considered here is termed; the out-of-plane libration points. 
The out-of-plane libration points is birthed from the existence of the three-dimsional Restricted 
Three-Body Problem (R3BP). Its points or positions are denoted by ��,�. These positions (��,�) lie in 
the �� −plane almost directly above and below the center of each oblate primary. We have 

computed numerically the positions of the out-of-plane libration points ���,�� and its stability to show 

the effects of the parameters involved. With the help of the software MATHEMATICA, we have 
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observed the topologies of Zero-Velocity Curves (ZVC) for the stated problem. It is found that, the 
positions of the out-of-plane libration points for the binary systems: Gliese 667 and Sirius seems to 
respectively move away and closer in the absence and present of oblateness. For the stability, it is 
evidenced that, for each set of values, there exist at least one complex root with positive real part 
and hence in Lyapunov sense, the stability of the out-of-plane libration points are unstable for the 
binary systems mentioned above. 
 

 
Keywords: Out-of-Plane; stability; libration points; ER3BP; Oblateness; Zonal Harmonics J4. 
 
1. INTRODUCTION 
 
The motion of the general three-body problem is 
govern by eighteen first order, coupled and non-
linear differential equations. However, only ten 
integrals of the motion are in existence; they are 
derived from the conservation of linear 
momentum, angular momentum and energy. Due 
to the nature of these equations of motion, 
solving them analytically becomes a challenge. It 
is by this that Lagrange assumed an infinitesimal 
mass (negligible mass) to be one of the masses 
possessed by the three-body problem. He called 
the three-body problem as the “Restricted Three-
Body Problem (R3BP)”. The R3BP describes the 
motion of an infinitesimal mass moving under the 
gravitational effects of two finite masses, called 
primaries, which move in circular orbits around 
the origin of a mass on the premise of their 
mutual attraction and the negligible mass 
(infinitesimal) having no influence on the motion 
of the two finite masses. This type of R3BP is 
called the “Circular Restricted Three-Body 
Problem (CR3BP)”. The elliptic restricted three-
body problem (ER3BP) describes the three-
dimensional motion of a small particle, called the 
third body (infinitesimal mass) under the 
gravitational attraction force of two finite bodies, 
called the primaries, which revolve on elliptic 
orbits in a plane around their common center of 
mass. The motions of an asteroid, a space probe 
or an artificial satellite under the gravitational 
attraction of the Sun-Jupiter or Earth-Moon 
systems are typical examples. 
 
The R3BP assumed the status of the most 
studied areas in space dynamics as well as 
celestial mechanics. Many results which are very 
important to our day to day activities have been 
produced by well-known mathematicians and 
scientists in a way to solve the problem involving 
the motion of natural bodies. Researches 
[1,2,3,4] among many have studied the collinear 
and non-collinear equilibrium points with varying 
parameters and chosen binary systems. Their 
results among many have shown a decrease in 
the size with an increase in the parameters 

involved when considering the stability nature of 
their studied problems.   
 
SubbaRao [5], AbdulRaheem and Singh [6], 
Singh and Mohammed [7], Singh and Leke 
[8,9,10] and Singh and Tyokyaa [3] have 
investigated Restricted three-body problem when 
one or both primaries are taken as oblate 
spheroids in both circular and or elliptic form. 
Sharma and SubbaRao [11] considered the 
triangular libration points, taken the bigger 
primary as oblate spheroid whose equatorial 
plane agrees with the plane of motion. Their 
result asserted that, the oblateness of the 
primaries increase for both Coriolis and 
Centrifugal forces and the range of its linear 
stability at the triangular points decrease. This 
proves that the Coriolis force is not always a 
stabilizing force. 
 
Numerous researches have affirmed the 
instability of collinear points in most cases 
[1,2,12,13,14]. Singh and Leke [8] studied the 
libration points and their stability in the R3BP 
with oblateness and variable masses. Their 
result shows that, the collinear points are stable 
due to k (kappa). However, it remains unstable in 
the out-of-plane libration points even with the 
introduction of k (kappa). Singh and Leke [10] in 
their study involving the binary star “post-AGB” 
and disc as a dust grain particle motion treatment 
around the non-collinear libration points affirmed 
that, the libration points around IRAS 11472-
0800-G29-38 system are particularly unstable. 
 
Javed and Shahbaz [15,16], considered the 
effects of Albedo and oblateness on the collinear 
and non-collinear libration points in the elliptic 
restricted problem of three-bodies. Recently, 
Javed et al. [17] studied the elliptic restricted 
three-body problem to show the effects of a 
dipole model over a synchronous system of 
Asteroids. 

 
The equation of motion of the three-dimensional 
restricted three-body problem with oblateness of 
the primaries allow the existence of two families 
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of the out-of-plane libration points denoted by 
��,� and ��,� . The first family (��,�), in the sun-
planet-particle and Galaxy Kernel-sun-particle 
cases was first pointed out by [18]. These points 
lie in the �� −plane symmetrically with respect to 
the � − ����  along the curve almost directly 
above and below the center of each oblate 
primary. These points are denoted by ��,� 
[1,2,19,20,21]. 
 
Many studies have been carried out on the out-
of-plane libration points. Among many, are 
[2,19,21,22,23]. Das et al. [19] considered the 
out-of-plane libration points ��(� = 6,7,8,9) in an 
account of PR-drag of a passive micron size 
particle and their linear stability in the field of 
radiating binary systems (Kruger 60 and RW-
monocerotis). They affirmed that, their positions 
are unstable in the presence of PR-drag and are 
stable without the introduction of PR-drag. 
Reference [1] studied the effects of Coriolis and 
centrifugal forces on the positions of the out-of-
plane libration points when both primaries are 
radiating and oblating. An extension of [1] was 
carried out by [2]. Their study introduces two 
binary systems: Leporis and Altair.  The 
Yarkovsky effects in a modified 
photogravitational three-bodies were observed 
by [23]. His study produces nine (9) points in the 
out-of-plane and about 256 of the out-of-plane 
libration points in existence. Singh and Amuda 
[21] considered the secondary primary as a 
source of radiation in their study of the PR-drag 

out-of-plane libration points in the circular 
photogravitational R3BP. Their results show 
instability in the out-of-plane libration points for 
the binary system Cen X-4. Our present                   
work considered the �� − �����  coordinates in 
the ER3BP taken oblateness up to zonal 
harmonics ��  of both primaries in the                   
field of stellar binary systems; Gliese 667 and 
Sirius. 
 

The paper is organized as follows: Sections 2 
presents the equations of motion; Section 3 
examine the positions of out-of-plane libration 
points; section 4 studied their stability; section 5 
present the topologies of ZVC of the out-of-plane 
equilibrium points, section 6 explores numerical 
application and the discussions and conclusions 
are provided in section 7. 
 

2. EQUATION OF MOTION 
 
Consider a rotating frame of reference (�,�,�,�) 
with the origin at the centre of mass of the 
primaries (Szebehely [24]). The � − ����  lies 
along the line joining the two finite masses � � 
and � � . The � − ����  is perpendicular to the 
� − ���� and lies in the plane of the orbits of the 
finite bodies. The � − ���� is perpendicular to the 
orbital plane of the finite bodies at the origin. Let 
��  and ��  be the distances of the infinitesimal 
mass � � from the bigger and smaller primaries 
with masses � �  at (−��,0,0) and � �  at (��,0,0) 
respectively as shown in Fig. 1. 

 

 
 

Fig. 1. Rotating frame of reference 



We adopted the equation of motion under study from [2] and are presented here in dimensionless
pulsating coordinate system (�,�,�)

� ′′ − 2�′ =
�Ω

��
, �′′ + 2� ′ =

�Ω

��
,             

 
with the force function 
 

Ω = (1 − ��)�
�

� �
�

�
(�� + ��)+

3��28�25−3��1�22�25+ 9�
    (2) 

 
The mean motion, �, is given as 
 

�� =
������

�
�

�(����)
�1 +

�

�
(�� + ��)

 

 ��
� = (� − ��)

� + �� + ��,(�

 
Where, � �,� � are the masses of the first (bigger) and second (smaller) primaries positioned at the 
points (��,0,0),� = 1,2 ; �� = �����

�

oblateness of the bigger and smaller primaries whose mean radii are 
� �

� ��� �
 is the mass ratio, while � 

respectively. 
 

2.1 The Potential of an Oblate Body
 
The potential of an oblate of mass �
 

� = −
��

�
�1 −

�

��
���� −

�

��
���

 
Where, ��  are the Legender Polynomial of order 
zonal harmonics. The zonal harmonics are denoted by 
zero. The inclusion of the odd �′� allow for a lack of symmetry about the equator (Danby [25]).
 
2.2 Ellipsoid 
 
An ellipsoid is a closed quadric-surface
 

 

Singh and Richard; IAARJ, 2(4): 1-15, 2020; Article no.IAARJ.61360

 
4 
 

We adopted the equation of motion under study from [2] and are presented here in dimensionless
) as follows; 

 

,             � ′′ =
�Ω

��
                                                                

)+
�

��
�
(���)

��
+

(���)��

���
� −

�(���)��

���
� −

�(���)���
�

���
� +

�(���)���
�

���
�

��2�28�27                                                                                       

)−
��

�
(�� + ��)�                                                                      

= 1,2)    �� = −�,   �� = 1 − � ,   � =
� �

� ��� �
   

are the masses of the first (bigger) and second (smaller) primaries positioned at the 
  ��� �� = �����

�  (� = 1,2)  are the characterize zonal harmonic 
oblateness of the bigger and smaller primaries whose mean radii are �� ��� ��  respectively. 

 and �  are the semi-major axis and eccentricity of the orbits, 

The Potential of an Oblate Body 

�  at a point distance � is given by 

�� −
�

��
���� − ⋯ �  

are the Legender Polynomial of order � (� = 1,2,… ) and �′� are constants and are called 
zonal harmonics. The zonal harmonics are denoted by �� &  ��. For a spherical body, all the 

allow for a lack of symmetry about the equator (Danby [25]).

surface that is a three-dimensional analogue of an ellipse

 

Fig. 2. Shape of an ellipsoid 
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We adopted the equation of motion under study from [2] and are presented here in dimensionless-

                                                                          (1) 

�

+
�

��
+

���

���
� −

                                                                                     

                                                                             (3) 

    (4)  

are the masses of the first (bigger) and second (smaller) primaries positioned at the 
are the characterize zonal harmonic 

respectively. � =

major axis and eccentricity of the orbits, 

are constants and are called 
. For a spherical body, all the �′� will be 

allow for a lack of symmetry about the equator (Danby [25]). 

ellipse 
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In the above figure, if � = � > �,  we have an oblate spheroid. In other words, an ellipsoid having a 
polar axis shorter than the diameter of the equatorial circle whose plane bisects is known as an oblate 
spheroid, thus, its two moments of inertial are equal out of the three. It is the approximated shape of 
many planets and celestial bodies, including Saturn, Jupiter and to a lesser extent the Earth. It is 
therefore the most used geometric figure for defining reference ellipsoid, upon which cartographic and 
geodetic system are based. The degree of flattening of a celestial object, such as a planet from a true 
spherical form, largely as a result of rotation is called oblateness. 

 
3. POSITIONS OF OUT-OF-PLANE LIBRATION POINTS 
 
To find the positions of the out-of-plane libration points denoted by ��,�, we solve for the solutions of 
Ω� = Ω� = Ω� = 0 that is; 

 

Ω� = (1 − ��)�
�

� �� −
�

��
�
(���)(���)

��
� +

�(���)(���)��

���
� −

��(���)(���)��

���
� −

��(���)(���)���
�

���
� +

631−��+ ��2�28�19+ ��+ �−1�23+3��+ �−1�12�25−15��+�−1�28�27−15��+ �−1�1�22�27
+63��+ �−1�2�28�29        (5) 
 

Ω� = (1 − ��)�
�

� ���1 −
�

��
�
(���)

��
� +

�(���)��

���
� −

��(���)��

���
� −

��(���)���
�

���
� +

��(���)���
�

���
� +

�

��
� +

����

���
� −

15��28�27−15��1�22�27+ 63��2�28�29                                                               
    (6) 

 

Ω� =
������

�
�
�

��
�−� �

(���)

��
� +

�(���)��

���
� −

��(���)��

���
� −

��(���)���
�

���
� +

��(���)���
�

���
� +

�

��
� +

����

���
� −

�����

���
� −

15��1�22�27+63��2�28�29                                                                                                          
   (7) 

 
For the libration points, the solution of equations (5), (6) and (7) can be obtained by setting Ω� = Ω� =

Ω� = 0 

 

� −
�

��
�
(���)(���)

��
� +

�(���)(���)��

���
� −

��(���)(���)��

���
� −

��(���)(���)���
�

���
� +

��(���)(���)���
�

���
� +

�(�����)

��
� +

3��+ �−1�12�25−15��+�−1�28�27−15��+ �−1�1�22�27+63��+ �−1�2�28�29=0                     
                 (8) 
 

� �1−
�

��
�
(���)

��
� +

�(���)��

���
� −

��(���)��

���
� −

��(���)���
�

���
� +

��(���)���
�

���
� +

�

��
� +

����

���
� −

�����

���
� −

������
�

���
� +

63��2�28�29=0                                                                                            
   (9) 

 

−� �
(���)

��
� +

�(���)��

���
� −

��(���)��

���
� −

��(���)���
�

���
� +

��(���)���
�

���
� +

�

��
� +

����

���
� −

�����

���
� −

������
�

���
� +

63��2�28�29=0           
 (10) 

 
Now, for the solutions of equations (8) and (10) with � = 0 and � ≠ 0 equation (10) becomes 

 
�(���)

����
� −

�(���)��

�����
� +

��(���)��

�����
� +

��(���)���
�

�����
� −

��(���)���
�

�����
� −

�

����
� −

����

�����
� +

�����

�����
� +

������
�

�����
� −

������
�

�����
� = 0           (11) 

 
Multiplying equation (11) by � − �� and � − �� where �� = −� and �� = 1 − � we have respectively; 
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�(���)(���)

����
� −

�(���)(���)��

�����
� +

��(���)(���)��

�����
� +

��(���)(���)���
�

�����
� −

��(���)(���)���
�

�����
� −

�(���)

����
� −

��(���)��

�����
� +

���(���)��

�����
� +

���(���)���
�

�����
� −

���(���)���
�

�����
� = 0                                                           (12)  

 
�(���)(�����)

����
� −

�(���)(�����)��

�����
� +

��(���)(�����)��

�����
� +

��(���)(�����)���
�

�����
� −

��(���)(�����)���
�

�����
� −

�(�����)

����
� −

��(�����)��

�����
� +

���(�����)��

�����
� +

���(�����)���
�

�����
� −

���(�����)���
�

�����
� = 0                              (13) 

 

Subtracting equation (12) from (8) and substituting the value of �� =
�

�
�1 +

�

�
�� +

�

�
�� −

��

�
�� −

��

�
�� +

3�22 yields; 

 

� = −� �1 +
���

�
+

���

�
−

����

�
−

����

�
−

���

��
�
��
−

����

��
�
��
−

�����
�

��
�
��
−

�����
�

���
�                              (14) 

 
Now, from (4) we have 
 

�� = ��
� − (� + �)�, (� = 1,2)    �� = −�,   �� = 1− � ,   � =

� �

� ��� �
                                (15) 

 
But from Singh and Tyokyaa [3] we have; 
 

 ��
� = �

�
�� (1 − �� − �� − �� +

���

�
+

���

�
+ ���

��
�� −

����
��

��

�
) ,   ��

� = �
�
�� (1 − �� − �� − �� +

���

�
+

���

�
+ ���

��
�� −

����
� �

��

�
)                                                                                     (16) 

 
Considering equations (15) and (16) yields 
 

�� = ��
�
�� �1 − �� − �� − �� +

���

�
+

���

�
+ ���

��
�� −

����
��

��

�
�− ��(1 + 3�� + 3�� −

����

�
−

15�24−3�1�−23+ 15�2�−434+15�1�2�−43−63�2�2�−24)  

 

� = ��
�
�� �1 − �� − �� − �� +

���

�
+

���

�
+ ���

��
�� −

����
��

��

�
�− ��(1 + 3�� + 3�� −

����

�
−

����

�
−

3�1�−23+15�2�−434+15�1�2�−43−63�2�2�−24)12                                  
 (17) 

 
Equations (14) and (17) present the location denoted by  ��,� of the problem under review. 
 

4. STABILITY OF OUT-OF-PLANE LIBRATION POINTS 
 
To obtain the stability in the xz-plane of the restricted problem of three-bodies, we established the 
characteristics equation of the system under consideration. 
 
Now, let the location of any of the libration point be denoted by (��,��,��) and suppose the small 
displacement of the location are (�,�,�), then  
 

� = �� + �,  � =  �� and  � = �� + � 
 
Taking derivatives, we have 
 

� ′ = � ′ ,� ′′ = � ′′ , �′ = � ′ ,�′′ = � ′′  and � ′ = � ′ ,�′′ = � ′′                                                (18) 
 
Given the equations of motion of the infinitesimal mass by Singh and Tyokyaa [3] as; 
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� ′′ − 2�′ =
�Ω

��
 , �′′ − 2� ′ =

�Ω

��
 and  � ′′ =

�Ω

��
                   (19) 

 
We obtain the characteristics equation of the system as; 
 

�� + �4 −Ω��
�
− Ω��

�
− Ω��

� ��� + �Ω��
�

Ω��
�

+ Ω��
�

Ω��
�
+ Ω��

�
Ω��
�
− 4Ω��

�
− �Ω��

� �
�
� �� −

�Ω��
�

Ω��
�

Ω��
�
− �Ω��

� �
�
Ω��
�
� = 0                                                                                              (20) 

 
The superscripts o indicates that the partial derivatives are evaluated at the out-of-plane points under 
consideration. At the points under consideration ignoring products and higher order terms of very 
small parameters we have; 
 

Ω��
�

= (1 − ��)�
�
�� �1 −

�(���)

��
�
��
−

��

��
�
��
−

�(���)��

��
�
��

+
�����

��
�
��
+

��(���)��

��
�
��

−
����

��
�
��
−

�(���)��

��
�
��

−
����

��
�
��
+

1051−��232�2+105��232�2+1051−��1�28�2+105��1�28�2−451−��232�23−45��232�23
−451−��232�23−45��232�23                (21) 
 

Ω��
� = (1 − ��)�

�
�� �

�(���)

��
�
��
+

��

��
�
��
−

��(���)��

��
�
��

−
�����

��
�
��
−

��(���)��

��
�
��

−
�����

��
�
��
−

�(���)��

��
�
��

−
����

��
�
��
+

1951−��232�23+195��232�23+ 1951−��232�23+ 195��232�23−3151−��232�2−315��23
2�2−3151−��1�28�2−315��1�28�2            (22) 
 

Ω��
�
= (1 − ��)�

�
�� �

��

��
�
��
−

�(���)

��
�
��
+

��(���)��

��
�
��

−
����

��
�
��
+

��(���)��

��
�
��

+
�����

��
�
��
−

��(���)��

���
�
��

+
�����

���
�
��
+

1051−��216�2−451−��216�23+45��216�23−105��216�2−31−��22�23+3��22�23+ 1051−
��1�24�2−105��1�24�2                   (23) 
 

Ω��
�
= (1 − ��)�

�
�� �−

�(���)

��
�
��
−

��

��
�
��
+

��(���)��

���
�
��

+
�����

���
�
��
+

��(���)��

���
�
��

−
�����

���
�
��
−

��(���)��

���
�
��

−
�����

���
�
��
+

1051−��264�2−451−��264�23−45��264�23+105��264�2−31−��28�23−3��28�23+1051−
��1�216�2+ 105��1�216�2                   (24) 
 

Substituting equations (21)-(24) and neglecting higher order terms of ��,��,��,�� & �  with their 
products, we have; 
 

�� + ��� + ��� − � = 0                                                                                                       (25) 
 
Where; 

 

� =
��

�
+ 2� + 3�� + �

�

�
−

���

�
��� + �−

�

�
+

��

�
� �� + �−

�

�
+ 4�� �� + �

���

��
+

���

�
� �� + �

��

��
−

225�16�2+−1054+ 105�4�1�2+ 315�4�1�2                                                            (26) 

� =
��

�
− 9� + �

�

�
− 6�� � + �−

���

��
+

����

��
� �� + �−

���

�
+

����

�
��� + �

��

�
− 12�� �� + �−

���

��
+

510�32�2+13516−15�16�2+−9458+ 945�8�1�2+ 315�8�1�2                           
 (27) 
 

� = −
��

���
+ �−

��

���
�� + �

�,���

���
−

����

��
��� + �

�,���

���
−

�,����

���
� �� + �−

���

���
+

�����

���
� �� + �−

�,���

�,���
��� +

�−
�,���

�,���
� ��                                                                                                      (28) 

 
Now, equation (25) becomes; 
 

�� + �
��

�
+ 2� + 3�� + �

�

�
−

���

�
��� + �−

�

�
+

��

�
��� + �−

�

�
+ 4�� �� + �

���

��
+

���

�
��� +

�
��

��
−

����

��
� �� + �−

���

�
+

����

�
����

� + �
����

�
� ���

�� �� + �
��

�
− 9� + �

�

�
− 6��� + �−

���

��
+

����

��
��� + �−

���

�
+

����

�
��� + �

��

�
− 12�� �� + �−

���

��
+

����

��
� �� + �

���

��
−

���

��
��� + �−

���

�
+
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����

�
� ���

� + �
����

�
����

�� �� − �−
��

���
+ �−

��

���
� � + �

�,���

���
−

����

��
��� + �

�,���

���
−

�,����

���
� �� +

�−
���

���
+

�����

���
� �� + �−

�,���

�,���
��� + �−

�,���

�,���
���� = 0                           (29) 

 

5. ZERO-VELOCITY CURVES (ZVC) IN 
THE �,�- PLANE 

 
Using equations (2), (3) and (4), we have 
presented our quantitative method as the 
premise to which the information about the 
motion of the third body near the out-of-plane 
libration points is understood. These Zero-
Velocity Curves (ZVC) in the (�,�)  are 
demonstrated considering the binary systems: 

Gliese 667 and Sirius. The effects of the 
parameters under study on the positions of the 
out-of-plane libration points are shown in Figs. 3 
& 4 and Figs. 5 & 6 for Gliese 667 and Sirius 
systems respectively. These parameters have 
significant effects on the positions and stability of 
the problem under consideration for the 
aforementioned binary systems. The possible 
topologies of these curves are demonstrated in 
Figs. 3-6 for Gliese 667 and Sirius systems. 

 

 

 
 

Fig. 3. Zero-Velocity Curves for Gliese 667 system with Oblateness at �� (�� & ��) 
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Fig. 4. Zero-Velocity Curves for Gliese 667 system with Oblateness at �� (�� & ��) 
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Fig. 5. Zero-Velocity Curves for Sirius system with Oblateness at �� (�� & ��) 
 

 

 
 

Fig. 6. Zero-Velocity Curves for Sirius system with Oblateness at �� (�� & ��) 
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6. NUMERICAL APPLICATIONS 
 
Considering  (14), (17) and (29),  the locations 
and stability of the out-of-plane libration points 
are computed numerically using the software 
package MATHEMATICA for the systems Gliese 
667 and Sirius. Tables 2-5 present the effects 
due to the perturbed oblateness up to zonal 

harmonics ��, semi-major axis and eccentricity of 
the obits on the location and stability of the 
stated problem. We considered � = 1− �  and 
� ≪ 1  in the computation. Using software 
package GNU-plots, the effects of these 
parameters on the positions of out-of-plane 
libration points are demonstrated graphically in 
Figs. 7-10. 

 
Table 1. Numerical data 

 
Binary 
system 

Masses Mass ratio (�) Semi-major axis (�) Eccentricity 
(�) �� �� 

Gliese 667 0.73 0.31 0.2981 0.2500 0.5800 
Sirius 2.02 0.978 0.3262 2.8582 0.5942 

 
Table 2. Stability and locations of out-of-plane libration points for Gliese 667 for � = �. � 

 
Oblateness Positions of out-of-

plane points 
Stability of out-of-plane points 

�� �� �� �� � ±� ±��,� ±��,� ±��,� 

0.00 0.00 0.0 0.00 −0.2981 0.4177 ±0.4250� ±1.0493� ±2.3736� 
0.01 −0.005 0.02 −0.01 −0.3338 0.4456 ±0.3963� ±1.0400� ±2.3612� 

0.02 −0.01 0.04 −0.02 −0.3694 0.4718 ±0.3631� ±1.0308� ±2.3490� 
0.03 −0.015 0.06 −0.03 −0.4051 0.4967 ±0.3242� ±1.0219� ±2.3370� 

0.04 −0.02 0.08 −0.04 −0.4408 0.5203 ±0.2770� ±1.0131� ±2.3251� 
0.05 −0.025 0.10 −0.05 −0.4765 0.5430 ±0.2160� ±1.0046� ±2.3133� 

 
Table 3. Stability and locations of out-of-plane libration points for Gliese 667 with  � = �. � 

 
Oblateness Positions of out-of-

plane points 
Stability of out-of-plane points 

�� �� �� �� � ±� ±��,� ±��,� ±��,� 

0.00 0.00 0.0 0.00 −0.2981 0.4177 ±0.4250� ±1.0493� ±2.3736� 

0.01 −0.005 0.02 −0.01 −0.3365 0.4322 ±0.3970� ±1.0366� ±2.3644� 

0.02 −0.01 0.04 −0.02 −0.3749 0.4461 ±0.3645� ±1.0242� ±2.3554� 
0.03 −0.015 0.06 −0.03 −0.4134 0.4597 ±0.3260� ±1.0120� ±2.3465� 
0.04 −0.02 0.08 −0.04 −0.4518 0.4728 ±0.2790� ±1.0002� ±2.3377� 
0.05 −0.025 0.10 −0.05 −0.4902 0.4856 ±0.2179� ±0.9888� ±2.3292� 

 
Table 4. Stability and locations of out-of-plane libration points for Sirius with � = �. � 

 
Oblateness Positions of out-of-

plane points 
Stability of out-of-plane points 

�� �� �� �� � ±� ±��,� ±��,� ±��,� 

0.00 0.00 0.0 0.00 −0.3262 1.0939 ±0.5527 ±0.6438� ±2.1026� 
0.01 −0.005 0.02 −0.01 −0.3466 1.0488 ±0.6206 ±0.6563� ±2.0939� 

0.02 −0.01 0.04 −0.02 −0.3670 1.0017 ±0.6805 ±0.6667� ±2.0854� 
0.03 −0.015 0.06 −0.03 −0.3874 0.9522 ±0.7349 ±0.6754� ±2.0771� 

0.04 −0.02 0.08 −0.04 −0.4079 0.9001 ±0.7851 ±0.6829� ±2.0690� 
0.05 −0.025 0.10 −0.05 −0.4283 0.8447 ±0.8321 ±0.6895� ±2.0610� 
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Table 5. Stability and locations of out-of-plane libration points for Sirius with � = �. � 
 
Oblateness Positions of out-of-

plane points 
Stability of out-of-plane points 

�� �� �� �� � ±� ±��,� ±��,� ±��,� 

0.00 0.00 0.0 0.00 −0.3262 1.0939 ±0.5527 ±0.6438� ±2.1026� 
0.01 −0.005 0.02 −0.01 −0.3463 1.0486 ±0.6216 ±0.6543� ±2.0973� 
0.02 −0.01 0.04 −0.02 −0.3665 1.0014 ±0.6823 ±0.6628� ±2.0921� 
0.03 −0.015 0.06 −0.03 −0.3866 0.9518 ±0.7373 ±0.6700� ±2.0870� 
0.04 −0.02 0.08 −0.04 −0.4068 0.8994 ±0.7880 ±0.6761� ±2.0821� 
0.05 −0.025 0.10 −0.05 −0.4269 0.8439 ±0.8354 ±0.6815� ±2.0772� 

 

 
 

Fig. 7. Effects of oblateness on ��,� for Gliese 667 system for � = �. � 
 

 
 

Fig. 8. Effects of oblateness on ��,� for Gliese 667 system for � = �. � 
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Fig. 9. Effects of oblateness on ��,� for Sirius system with ��� � = �. � 
 

 
 

Fig. 10. Effects of oblateness on ��,� for Sirius system for � = �. � 
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7. DISCUSSION AND CONCLUSION 
 
The motion of the infinitesimal mass in the out-of-
plane libration points moving in elliptic orbits �4 in 
the field of stellar binary systems: Gliese 667 and 
Sirius is described in Equations 1-4. Equations 
14 and 17 locate the positions of the out-of-plane 
libration points denoted by �6,7. The results of our 
study agrees with [26] when the eccentricity and 
the Zonal harmonics up to �4  oblateness are 
absent. With the help of equations 2, 3 and 4, we 
were able to present the Zero-Velocity Curves 
(ZVC) as our quantitative method in order to avail 
the information about the motion of the third body 
near the out-of-plane libration points for the 
binary systems considered in this study. The 
possible topologies of these curves are 
demonstrated in Figs. 3-6 for Gliese 667 and 
Sirius systems. As evidenced in Tables 2-5 and 
Figs. 7-10, the positions of the studied problem 
are greatly affected by the perturbed parameters 
involved. This has confirmed with the results of 
[2,19,21]. The effects of this stated parameters 
on the locations and the size of stability region of 
the study under review are shown in Tables 2-5 
for the systems: Gliese 667 and Sirius. We 
observed that, the topologies of ZVC on the 
positions of the out-of-plane libration points for 
the binary systems: Gliese 667 and Sirius seems 
to move apart in the absence of oblateness 
(�1 = �1 = �2 = �2 = 0) . This is evidence in 
Figs. 3 & 5 of label � and Figd. 4 & 6 of label � for 
both binary systems. However, it seems to move 
closer in the presence of oblateness for both 
binary systems as shown in Figs. 3 & 5 of label 
� − �  and Figs. 4 & 6 of label �� − �� . As 
presented in Figs. 7-10, the positions of the out-
of-plane libration points (�6,7) of the infinitesimal 
body lie in the �� − plane almost directly                 
above and below the center of each oblate 
primary. As it is evidenced in Tables 2-5, for 
each set of values, there exist at least one 
complex root with positive real part and hence in 
Lyapunov sense, the stability of the out-of-plane 
libration points are unstable when both primaries 
are considered for Gliese 667 and Sirius 
systems. 
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