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ABSTRACT 
 
This paper explores effect of perturbing forces on periodic orbits generated by the triangular 
equilibrium points of the restricted three-body problem taking into account small perturbations in the 
Coriolis and centrifugal forces when the infinitesimal mass is an oblate spheroid and the central 
binary is two radiating oblate stars surrounded by circular cluster of materials. We compute explicitly 
expressions for the frequency, angle of rotation of the principal axis, eccentricity and lengths of 
semi-major and minor axes of the orbits. Since some facts are not directly observable from the 
analytic solutions, numerical evidences are provided to analyze the structure and effect of each 
perturbing forces on the elements of the orbits. Among these, it is seen that the presence of cluster 
of materials reduces lengths of the semi-axes and is the only force that reduces the eccentricity 
while radiation pressure and oblateness of the primary star have same effect on the structure of the 
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orbits. Our study has relevance in the long-term motion of planets in binary systems, where planets 
have masses infinitesimally small. A question of celestial mechanics is how long can the triangular 
equilibrium points keep the infinitesimal mass in orbit from escaping? The determination of ranges of 
semi-major axis taking into account the perturbing forces may help to know if body is likely to remain 
or escape. It is seen that under combined effect of radiation, perturbations, oblateness and cluster of 
materials, the period, angle of rotation, eccentricity and length of semi-major axis all increases. 
Consequently, the infinitesimal mass is likely to escape in this case. However, with increasing 
accumulation of materials, the departure of the infinitesimal mass in orbit away from the vicinity of 
triangular equilibrium points is unlikely as it will override other perturbing forces and reduce the 
length of the semi-major axis. 

 
 

Keywords: RTBP; periodic orbit; perturbing forces, triangular equilibrium points. 
 

1. INTRODUCTION 
 

Three-body problem is an important problem in 
the classical and quantum mechanics which 
involves modeling the motion of three particles 
subject to their mutually gravitational attractions. 
The simplest form of the three-body problem is 
the restricted three-body problem (RTBP). This 
formulation is the most searched and interesting 
problem for astrophysicists and the model 
describes the motion of an infinitesimal mass 
moving under the gravitational influence of two 
massive bodies called the primaries which move 
in circular orbits around their common center of 
mass on the account of their mutual attraction 
[1,2]. To tackle the problem of classical RTBP, 
Lagrange considered the behavior of the 
distances between the bodies without finding a 
general solution. He discovered two distinct 
classes of constant-pattern solutions in rotating 
frame of reference where gravitational 
equilibrium can be maintained. These points are 

called equilibrium points  5..2,1iLi and are 

very important in space missions [3]. The Solar 
and Hemispheric Observatory (SOHO) lunched 
in 1995 and Microwave Anisotropy Probe (MAP) 
lunched in 2001 by NASA are currently in 
operation at Sun-Earth collinear equilibrium 
points. Solar Terrestrial RElations Observatory-
Ahead (STEREO-A) made its closest pass to 

triangular equilibria 5L  recently, on its orbit 

around the Sun. Also, Asteroid 2010 SO16 is 

currently proximal to 5L  point though at a high 

inclination (Smarandache & Christianto, 2006). 
 
In view of the importance of equilibrium points to 
the exploration and development of space, 
among the most fundamental questions about 
motion near equilibrium points are those about 
the existence of periodic orbits. Therefore, it is 
imperative to study the periodic structures 
around equilibrium points due to the rotational 

motion. Elements that could be used to describe 
the motion of the infinitesimal mass relative to 
the primary and secondary bodies are 
categorized as orbital and non orbital elements 
[4]. Angular momentum and total energy are the 
integrals available to measure the shapes and 
sizes of the orbits but are not directly observable. 
Therefore, eccentricities, inclination and semi 
major axis of the orbits are used to determine the 
shapes, orientation and sizes of the orbits.  
Periodic orbits are also used as reference orbits. 
The study of periodic orbits is a very useful tool 
for the study of non-integrable dynamical system, 
because they determine critically the structure of 
phase space, while the study of periodic orbits, 
which are close to actual motions, plays an 
important role in the understanding of the general 
properties of such a system. Through the study 
of periodic orbits, one can understand the role of 
other forces besides gravitational forces. 
Szebehely’s [3] gives a fairly good idea about the 
periodic orbits. 
 
Many Mathematicians and astronomers have 
investigated periodic orbits of the RTBP under 
different assumptions. Zagouras [5] considered 
the effect of radiation pressure on the periodic 
motion of small particle in the vicinity of the 
triangular points. Elipe and Lara [6] discussed 
periodic orbits in the RTBP by taking both the 
primaries as the source of radiation pressure. By 
means of some modifications to the method of 
numerical continuation of natural family of 
periodic orbits, they found several families of 
periodic orbits, both in two and three dimensions. 
Perdios [7] studied critical symmetric periodic 
orbits in the photogravitational RTBP in which the 
first primary is a source of radiation, and the 
study was extended by Perdios and Kalantonis 
[8] when the first primary is an oblate spheroid. 
The investigation of the combined effect of 
perturbations, radiation and oblateness, on the 
periodic orbits in the neighborhood of linearly 
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stable triangular equilibrium points was carried 
out by Abdul Raheem and Singh [9]. The periodic 
orbits generated by Lagrangian solutions of the 
RTBP when one of the primaries is an oblate 
body, was studied by Mittal et al. [10] while 
Abouelmagd and El–Shaboury [11] studied 
periodic orbits around the triangular points when 
the three bodies are oblate spheroids and the 
primaries are radiating. Singh and Haruna [12] 
examined the periodic orbits around triangular 
points of three oblate bodies under effect of 
radiation pressure of the primaries and small 
perturbations in the Coriolis and centrifugal 
forces. Singh and Leke [13] studied the periodic 
orbits when the main masses in the system are 
surrounded by a cluster of particles. Later, Singh 
and Leke [14] investigated the periodic orbits of a 
test particle around triangular equilibrium points 
in the RTBP with variable masses. Palacios et al. 
[15] investigated the symmetric periodic orbits in 
the Moulton-Copenhagen problem while the 
locations of Lagrangian points and periodic orbits 
around triangular points in the photo gravitational 
elliptic RTBP with oblateness, was studied by 
Johnson and Sharma [16]. Recently, Mittal et al. 
[17] extended an earlier contribution of Mittal et 
al. [17] by studying the periodic orbits generated 
by the Lagrangian solutions of the RTBP when 
both primaries are oblate spheroids.  
 
Inspired by the works of Singh and Haruna [12] 
and Singh and Leke [13], our aim in the present 
paper is to investigate effect of the perturbing 
forces on the periodic orbits around triangular 
equilibrium points of the restricted problem of 
three oblate bodies when the primaries are 
radiating stars and surrounded by a circular 
cluster of materials coupled with effect of small 
perturbations in the Coriolis and centrifugal 

forces. This paper can be viewed as an 
extension of the works of Abouelmagd and El–
Shaboury [11] and that of Singh and                     
Haruna [12]. 
 
The paper is organized in the following order: 
Section 2, contains the description of the 
equations of motion and locations of the 
triangular equilibrium points. Section 3 deals with 
the study of the periodic orbits. Here, the 
frequency and orientation of the elliptic orbits are 
computed both analytically and numerically. 
Numerical estimations of the period and periodic 
terms are also computed in this section and the 
orbits are drawn to show effect of the perturbing 
forces. In section 4, the eccentricity and length of 
the semi-major and minor axes of the elliptic 
orbits, are presented. The analytic computations 
have equally been backed up with numerical 
estimations. The discussion of our results is 
given in section 5 and conclusion drawn in 
section 6.  
 

2. EQUATIONS OF MOTION AND 
TRIANGULAR EQUILIBRIUM POINTS 

 

Let 1m and 2m  be the masses of two radiating 

stars and let 3m  be the mass of the infinitesimal 

body. We assume that the three bodies are 
oblate spheroids and the stars are surrounded by 
a cluster of materials. Following the works of 
Singh and Haruna [12] and Singh and Leke [13], 
the governing equations of motion under 
perturbing forces of radiation pressure, 
oblateness of the bodies, Coriolis and centrifugal 
perturbations coupled with the gravitational 
potential from cluster of materials around the 
stars, have the form: 

 

2 xx ny U  
  

2 yy nx U       
                                                                                                                                (1)
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 
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22 2

2 1r x y     ,
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i i
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AE AP

R



 , 1i  :  1, 2,3i  . 

 

1q , 2q  are radiation pressures of the primary and secondary star, respectively, while 1 , 2  and 3

are the oblateness of the bodies of mass 1m , 2m  and 3m , respectively. 1r and 2r are the distances of 

the infinitesimal mass from the respective stars. The last term in U is the gravitational potential due to 

the mass dM of the enclosed cluster of circular materials and 22 yxr  is the radial distance of 

the infinitesimal mass, whileT a b  defines the density profile of the accumulated materials.  is 

the mass parameter and n  is the mean motion of the stars while  and  represent parameters 

through which small perturbations  and  are given in the Coriolis and centrifugal forces, 

respectively such that 1   , 1   ,  , 1  and  . R is the distance between the stars 

and, 2
iAE and  2 1, 2,3iAP i  are the equatorial and polar radii of the bodies  1, 2,3im i  , 

respectively. 

 

Equations of motion (1), admits the Jacobi integral 

 

 2 2 2C x y U   
                                                                                                                           

(3) 

whereC is the Jacobi constant.  

 

The triangular points are the solutions of system (1) when the components of velocity and 

acceleration are zero and 0y  .  Solving these equations, we get  

 

      2/3
1 2 1 22/3

1 1 1 1 1
1 1

2 3 3 2
x q q   



 
        

 
                                                           (4) 

 

 

 
Equations (4) are the coordinates of the 
triangular equilibrium points of the problem of 
three oblate bodies under radiation pressure of 
the stars, small change in the Coriolis and 
centrifugal forces when the central binary is 
enclosed by a cluster of materials. The 
coordinates (4) differ from those in Singh and 
Haruna [12] only because of the last term in the 
y  coordinate. 

 

3. THE PERIODIC ORBITS 
 
A dynamical system is periodic if the same 
configuration is repeated at regular intervals of 
time. Angular momentum and total energy are 

the integrals available to measure the shapes 
and sizes of the orbits but are not directly 
observable. Therefore, eccentricities, inclination 
and semi major axes of the orbits are used to 
determine the shapes, orientation and sizes of 
the orbits. In this section, we calculate the 
frequency, orientation, eccentricity and lengths of 
the semi-axes. 

 
3.1 Angular Frequency of the Periodic 

Orbits 
 
The characteristic equation when the infinitesimal 
mass is displaced away from the triangular 
equilibrium point is given as 
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The four roots 1,2 1i    and 3,4 2i   are distinct pure imaginary numbers and the solution is 

bounded and is composed of two harmonic motions. The general solution is [3]: 
 

1 1 2 1 3 2 4 2

1 1 2 1 3 2 4 2

cos sin cos sin

cos sin cos sin

A t A t A t A t

B t B t B t B t

    

    

   

   
                                                                          

(6)

 
 
Where 
 

 

 

,  are small displacements applied at the 

triangular equilibrium points (4). The coefficients

iA   and  1,2,3,4iB i  are the long and short 

periodic terms respectively, while 1 and 2 are 

the frequency of the long and short periodic 
orbits, respectively. The value of the frequency of 
the long period orbit depends on the mass 
parameter, the centrifugal perturbation, the 
potential of cluster of material points, radiation 
pressures of the stars and oblateness of the 
bodies but does not depend on the Coriolis 

perturbation, while the frequency of the short 
period orbits is affected by all the perturbing 
forces. Below in Table 1, we estimate 
numerically the frequencies and periods in 
equations (7) and (8), for some chosen 
parametric values. We consider the stars to be a 
yellow supergiant eclipsing binary system, having 
the shape of an oblate spheroid and are mostly 
same in size. Hence, for all our numerical results, 

we take 0.48785  . In Table 2, we check the 

effects of cluster of material points on the 
frequencies and periods. 
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Table 1. Numerical evaluations of the angular frequencies and the period 
 

1q  2q  1  2  3      
dM  1  2  1  2  

1 1 0 0 0 0 0 0 1.56079i 1.25058i  4.02565 5.02423 
0.9988 1 0 0 0 0 0 0 1.56064i 1.25076i 4.02602 5.02351 
1 0.9985 0 0 0 0 0 0 1.56061i 1.25080i 4.02611  5.02333 
0.9988 0.9985 0 0 0 0 0 0 1.56046i 1.25098i 4.02648 5.02261 
1 1 0.024 0 0 0 0 0 1.50355i 1.40156i  4.17890 4.48299 
1 1 0 0.02 0 0 0 0 1.51324i 1.30743i 4.15214 4.80575 
1 1 0 0 0.015 0 0 0 1.54995i 1.28167i 4.05381 4.90236 
1 1 0 0 0 0.001 0 0 1.50355i 1.24737i 4.1789 5.03713 
1 1 0 0 0 0 0.002 0 1.55814i 1.25626i 4.03248 5.00151 
1 1 0 0 0 0 0 0.01 1.53476i 1.26607i 4.09391 4.96275 
0.9988 1 0.024 0 0 0 0 0 1.50340i 1.31934i 4.17931 4.76237 
0.9988 0.9985 0.024 0 0 0 0 0 1.50321i 1.31955i 4.17983 4.76160 
0.9988 0.9985 0.024 0.02 0 0 0 0 1.45378i 1.37356i 4.32195 4.57439 
0.9988 0.9985 0.024 0.02 0.015 0 0 0 1.44214i  1.40192i 4.35686 4.48183 
0.9988 0.9985 0.024 0.02 0.015 0.001 0 0 1.44214i 1.24778i 4.35686 5.03550 
0.9988 0.9985 0.024 0.02 0.015 0.001 0.002 0 1.43928i 1.40415i 4.36552 4.47473 
0.9988 0.9985 0.024 0.02 0.015 0.001 0.002 0.01 1.41101i 1.41797i 4.45296 4.43113 
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In Table 1, the entry in row 1 corresponds to the 
classical case when the governing parameter is 
the mass ratio of the stars, while row 2 and                         
row 3, are the cases of the RTBP with radiation 
effects of the first and second primary, 
respectively. As such, we have computed the 
numerical values of the frequencies and periods 
for the long and short period orbits by                       

weighing the effects of each imposed parameter 
and then considering their combinations.                          
Table 2 evaluates the effects of accumulation of 
material points around the stars on the                       
angular frequencies and periods for

0 0 .0 9 9dM  . 

 

Table 2. Effect of accumulation of material points on angular frequencies and periods for

1 0.9988q  , 2 0.9985q  , 1 0.024  , 2 0.02  , 3 0.015  , 0.001 , 0.002   

 

dM  1  2   1 12 /     2 22 /    

0 1.43928i 1.40415i 4.36552 4.47473 
0.01 1.41101i 1.41797i 4.45296 4.43113 
0.02 1.38217i 1.43165i 4.54588 4.38877 
0.03 1.35272i 1.44521i 4.64487 4.34761 
0.04 1.32260i 1.45863i 4.75061 4.30758 
0.05 1.29179i 1.47194i 4.86393 4.26864 
0.06 1.26023i 1.48513i 4.98576 4.23074 
0.07 1.22785i 1.49820i 5.11723 4.19383 
0.08 1.19459i 1.51116i 5.25969 4.15787 
0.09 1.16039i 1.52400i 5.41474 4.12281 
0.099 1.12871i 1.53548i 5.56668 4.09201 
0.0999 1.12550i 1.53662i 5.58259 4.08897 

 

3.2 Elliptic Orbits and Their Orientation 
 
Now, from equations (6), we select the initial conditions such that the coefficients of the short periodic 
terms of these equations are zero. In this case, we have an elliptic orbit and the periodic solution is 
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                                                                                                                  (9) 

 

Next, we expand the potential in equation (1) around the triangular points, to get 
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Equation (12) is a symmetric form of the potential in (1) while equation (10) is in the quadratic form 
and shows that the orbits around the triangular points are ellipses. 
 
Now equation (12) in its simplest form, is given as 
 

   (13)  

 
Using equation (13) in (10), gives 
 

2 2 0U K M N U                                                                                                               (14) 
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Introducing the variables,  and by the transformation: 

 

cos sin

sin cos

    

    

 

    
                                                                                                                     (15) 

 

This is equivalent to the rotation of the coordinate system  through angle as illustrated in Fig. 1 

below. 
 

 
 

Fig. 1. Orientation of the principal axes for the periodic orbits 
 

If we select such that the terms containing  in the force function U is zero, we get the new force 

function in its simplified quadratic form: 
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Where

  
 

     
 

Now, to get the orientation of the orbits, we set the term having coefficient to zero, in equation     

(14). We do this by substituting terms in 
2 for those in

2 , and the principal axes of the curve of zero 

velocity are oriented such that 
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The orientation described by equation (17) is 
determined by the perturbed forces of radiation 
pressure of the stars, oblateness of three bodies, 
potential from the circular cluster of materials and 
small change in the centrifugal perturbation. In 
Table 3, we compute numerically the angle of 
rotation of the principal axis (17), by an 
exploration which allows us to estimate the effect 
of each perturbing force on the orientation of the 
principal axis. We have numbered the rows in 
Table 3 from 1 to 17. Row 1 corresponds to the 
case of the classical RTBP when the                 
determining parameter is the mass ratio.                   
Row 2 and 3 consider the effect of radiation 
pressure of the primary and secondary star, 
respectively; and onto row 17, which is the 
generalized case. 
 
The angles, by which the axis deviate based on 
the effects of the perturbing forces, are the 
entries on the last column of Table 3. We 
observe that the angle on row1 and that on 
row 8 coincide because equation (17) is not 
affected by the Coriolis perturbation. Same goes 
for row14 and 15. From our numerical evidence, 
we notice that the accumulation of material 
points around the stars has a major influence on 
the rotation of the principal axis than any other 
perturbing force as seen in row 10, while 
interestingly; oblateness of the secondary star 
reduces the angle of rotation immensely (row 6). 
However, under the combined effects of 
radiation, oblateness of the bodies, centrifugal 
perturbation and the presence of a circular 

cluster of material points, the angle of rotation of 
the principal axis increases, as seen in row 17. 
These facts are not directly observable from the 
analytic solution given in equation (17). 
 
In Tables 4 and 5, we compute numerical the 

periodic terms iA ,  1,2iB i  , the angular 

frequency 1  and period   under effect of 

oblateness of the infinitesimal mass and 
accumulation of material points, respectively. 
 
Table 4 gives the numerical evaluations of effect 
of oblateness of the infinitesimal mass on the 
periodic terms, frequency and period of the 
orbits. Evidently, an increase in oblateness of the 
infinitesimal body leads to an increase and a 
decrease in the angular frequency and period, 
respectively. The converse is the case in Table 
5, where it is seen that an increase in the mass 
of the circular cluster of materials results in a 
decrease and an increase in the angular 
frequency and period of the orbits, respectively. 
Below in Fig. 2 and Fig. 3, we have drawn the 

orbits of the infinitesimal mass on the  plane 

under effects of oblateness of the infinitesimal 
mass by substituting the numerical estimations of 
the periodic terms, angular frequency and the 
period given in Table 4, in equation (9) and using 
the software Mathematica [18] to plot the orbits. 
Similarly, using Table 5, we have also drawn the 
orbits as a function of increasing mass of the 
clusters around the stars in Fig. 4. 

 
Table 3. Effect of perturbed forces on angle of rotation of the principal axis 

 
S/N 

1q  2q  1  2  3      
dM  tan 2    

1 1 1 0 0 0 0 0 0 0.042088 1.2050 
2 0.9988 1 0 0 0 0 0 0 0.042760 1.2242 
3 1 0.9985 0 0 0 0 0 0 0.042984 1.2306 
4 0.9988 0.9985 0 0 0 0 0 0 0.043656 1.2498 
5 1 1 0.024 0 0 0 0 0 0.084356 2.4109 
6 1 1 0 0.02 0 0 0 0 0.007988 0.2288 
7 1 1 0 0 0.015 0 0 0 0.075046 2.1458 
8 1 1 0 0 0 0.001 0 0 0.042088 1.2050 
9 1 1 0 0 0 0 0.002 0 0.042014 1.2029 
10 1 1 0 0 0 0 0 0.01 0.156119 4.4366 
11 0.9988 1 0.024 0 0 0 0 0 0.085027 2.4300 
12 0.9988 0.9985 0.024 0 0 0 0 0 0.085923 2.4554 
13 0.9988 0.9985 0.024 0.02 0 0 0 0 0.051823 1.4832 
14 0.9988 0.9985 0.024 0.02 0.015 0 0 0 0.084780 2.4229 
15 0.9988 0.9985 0.024 0.02 0.015 0.001 0 0 0.084780 2.4229 
16 0.9988 0.9985 0.024 0.02 0.015 0.001 0.002 0 0.084705 2.4208 
17 0.9988 0.9985 0.024 0.02 0.015 0.001 0.002 0.01 0.198736 5.6201 
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Table 4. Effects of oblateness of the infinitesimal mass on the periodic terms for 1 0.9988q  ,

2 0.9985q  , 1 0.024  , 2 0.02  , 0.001 , 0.002  , 0.01dM   

 

3  1A  2A  1B  2B  1   12 /    

0 -0.0122499 0.766013 0.856043 -0.152587 1.36267 3.38374 
0.004 -0.0142499 0.772941 0.845676 -0.158754 1.479 2.8724 
0.008 -0.0142499 0.77448 0.847987 -0.15942 1.48203 2.86064 
0.01 -0.0142499 0.77525 0.849143 -0.159754 1.48355 2.8548 
0.015 -0.0142499 0.777175 0.852032 -0.160587 1.48734 2.84029 
0.02 -0.0142499 0.779099 0.854922 -0.16142 1.49111 2.82592 
0.024 -0.0142499 0.780639 0.857233 -0.162087 1.49412 2.81454 

 

 

Fig. 2. Elliptic orbits when 3 0  , 1 0.9988q  , 2 0.9985q  , 1 0.024  , 2 0.02  , 0.001 ,

0.002  , 0.01dM  and (a), 3.38374t   (b) 10t   (c) 100t  (d) 300t   
 

Table 5. Numerical evaluations of periodic terms under effects of accumulation of materials for

1 0.9988q  , 2 0.9985q  , 1 0.024  , 2 0.02  , 3 0.015  , 0.001 , 0.002   
 

dM  1A  2A  1B  2B  1    

0 -0.0142499 0.785141 0.860726 -0.149292 1.43928i 4.36552 
0.01 -0.0142499 0.777573 0.856379 -0.153342 1.41101i 4.45296 
0.02 -0.0142499 0.770006 0.852032 -0.157392 1.38217i 4.54588 
0.03 -0.0142499 0.762438 0.847685 -0.161442 1.35272i 4.64487 
0.04 -0.0142499 0.754871 0.843339 -0.165492 1.32260i 4.75061 
0.05 -0.0142499 0.747303 0.838992 -0.169542 1.29179i 4.86393 
0.06 -0.0142499 0.739736 0.834645 -0.173592 1.26023i 4.98576 
0.07 -0.0142499 0.732168 0.830298 -0.177642 1.22785i 5.11723 
0.08 -0.0142499 0.7246 0.825951 -0.181693 1.19459i 5.25969 
0.09 -0.0142499 0.717033 0.821604 -0.185743 1.16039i 5.41474 
0.099 -0.0142499 0.710222 0.817692 -0.189388 1.12871i 5.56668 
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Fig. 3. Elliptic orbits under effects of oblateness of the infinitesimal mass when 1 0.024  , 

2 0.02  , 1 0.9988q  , 2 0.9985q  , 0.001 , 0.002  , 0.01dM  and (a) 3 0  (red orbit); 

3 0.024  (black orbit) (b) 30 0.024 
 

 
(e)                                                                                             (f) 

 
Fig. 4. Elliptic orbits with increasing mass of cluster of material points around the primaries for

1 0.024  , 2 0.02  , 3 0.015  , 1 0.9988q  , 2 0.9985q  , 0.001 and 0.002  , when (a) 

0dM  (b) 0.01dM  (c) 0.04dM  (d) 0.08dM  (e) 0.099dM  (f) The elliptic orbits when 

plane (a), (b), (c), (d) and (e) are combined; 0dM  (green orbit), 0.01dM   (yellow orbit), 

0.04dM   (red orbit), 0.08dM   (black orbit), 0.099dM   (purple colored orbit) 
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The paths drawn in panel (a), (b), (c), (d) in Fig. 2 
are the orbits of the infinitesimal mass plotted at 
different time when the third body is a sphere 

and the time is increased from 3.38374t 
(panel a) to 1015.122t  (panel d). From these 
figures, it can be seen that the orbits have 
regular elliptic shape and the paths are retained 

for long time 0t  , even when 300t T , the 

shape of the orbit remains same as for 10t T . 
In Fig. 3, the effects of variations in oblateness of 
the infinitesimal mass are shown. The red orbit in 
panel (a) is when the infinitesimal mass is a 
sphere and is drawn using the entries on the first 
row in Table 4 while the black orbit is drawn 
using the entries on the last row in Table 4 when 

3 0.024  . Each orbit in panel (b) has been 

drawn from the corresponding entries in the first 

to the last row (i.e., 30 0.024  ) in Table 4. 

The effects of variations in mass of accumulated 
material points combined with other perturbing 
forces, on the elliptic orbits of the infinitesimal 
mass have been shown in Fig. 4. 
 
In Table 6, we have computed values for the 
periodic terms by trying to estimate the effects of 
each perturbing force on them and next, we 
proceed to plot the orbits in Fig. 5 using our 
numerical evaluations recorded in Table 6. 
However, we only plot orbits which appear 
distinct from one another and also we combine 
some plots to show the effects of the perturbing 

forces on the elliptic orbits of the infinitesimal 
mass around triangular equilibrium points. 
 
The figures above have been drawn to show the 
influence of each perturbing force on the elliptic 
orbits of the infinitesimal mass using Table 6. 
The panel (a) corresponds to the orbit around the 
triangular points of the classical RTBP and has 
been plotted using the numerical values in row 1 
of Table 6. The figure in panel (b) is the orbit 
around triangular equilibrium points of the RTBP 
with an oblate primary star and has been plotted 
by using the values on row 5 in Table 6. The 
figure in Panel (c) which has been drawn using 
the values on row 6 is the elliptic orbit under 
effects of oblateness of the secondary star, while 
panel (d) is the orbit under combined effects of 
oblateness, radiation, perturbations and cluster 
of points around the stars. The combination of 
the orbits in panel (e) helps us to see how the 
orbit looks like in the case of the classical RTBP 
(red orbit) and what it turns out like (blue orbit) 
under the combined effects of the perturbing 
forces we studied in this paper. Panel (f) explains 
orbits of three cases. The red orbit is for the 
classical model of the RTBP, the green type 
shows the effect of accumulated materials 
around the stars while the blue orbit is for our 
generalized model. The last figure in panel (g) is 
the combination of orbits of all the cases in     
Table 6. 

 

4. ECCENTRICITY AND SEMI-AXES OF THE ELLIPTIC ORBITS 
 
The equation (3) has the associated characteristic equation of the form 
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The roots are 
 

      (18) 
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Table 6. Numerical estimations of effect of the perturbing forces on the periodic terms 
 

 2q  1  2  3      
dM  1A  2A  1B  2B  

1 1 0 0 0 0 0 0 -0.0122 0.7815 0.8660 -0.1443 
0.9988 1 0 0 0 0 0 0 -0.0117 0.7817 0.8657 -0.1443 
1 0.9985 0 0 0 0 0 0 -0.0126 0.7817 0.8657 -0.1443 
0.9988 0.9985 0 0 0 0 0 0 -0.0122 0.7819 0.8655 -0.1443 
1 1 0.024 0 0 0 0 0 -0.0242 0.7894 0.8590 -0.1473 
1 1 0 0.02 0 0 0 0 -0.0022 0.7792 0.8603 -0.1468 
1 1 0 0 0.015 0 0 0 -0.0122 0.7874 0.8746 -0.1468 
1 1 0 0 0 0.001 0 0 -0.0142 0.7931 0.8619 -0.1523 
1 1 0 0 0 0 0.002 0 -0.0122 0.7804 0.8653 -0.1445 
1 1 0 0 0 0 0 0.01 -0.0122 0.7740 0.8616 -0.1484 
0.9988 1 0.024 0 0 0 0 0 -0.0237 0.7895 0.8588 -0.1473 
0.9988 0.9985 0.024 0 0 0 0 0 -0.0242 0.7897 0.8585 -0.1472 
0.9988 0.9985 0.024 0.02 0 0 0 0 -0.0142 0.7873 0.8528 -0.1497 
0.9988 0.9985 0.024 0.02 0.015 0 0 0 -0.0142 0.7930 0.8614 -0.1522 
0.9988 0.9985 0.024 0.02 0.015 0.001 0 0 -0.0142 0.7934 0.8614 -0.1522 
0.9988 0.9985 0.024 0.02 0.015 0.001 0.002 0 -0.0142 0.7923 0.8607 -0.1524 
0.9988 0.9985 0.024 0.02 0.015 0.001 0.002 0.01 -0.0142 0.7847 0.8563 -0.1565 

 

1q
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Fig. 5. Elliptic orbits of the infinitesimal mass around triangular points in the case of (a) model 
of the classical RTBP (b) oblate primary star (c) oblate secondary star (d) generalized model 
(e) classical case (red orbit) and generalized model (blue orbit) (f) classical model (red orbit), 
presence of circular clusters (green) and generalized problem (blue orbit) (g) all perturbing 

forces from row 1 to row17 
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In order to get the eccentricity of the ellipse, we use the relations given by Szebehely (1967): 
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2 21e                                                                                                                                     (19) 

 
Where 
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,                                                                                                                                 (20)  

 
Using equation (7) and the first equation of (18) in equation (20), and retaining only linear terms in the 
parameters representing the introduced perturbed forces, we get  
 

 

 
Substituting (21) in equation (19), the eccentricity of the orbit is obtained: 

 (22) 

 
This equation gives the value by which the orbit departs from been circular. Clearly, the eccentricity of 
elliptical orbits depends on the mass ratio, small change in the centrifugal force, oblateness of the 
three bodies, radiation pressure of the stars and cluster of materials.  
 

Now, we proceed to find the lengths of the semi-major axis a  and semi-minor axis b of the elliptical 
orbits. from the relations 
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where  is given in equation (21) while 0 and 0 are given in (4) as initial conditions (Szebehely 

1967), and so we consider the origin of coordinates system to be the triangular points 4L .  Therefore, 

the lengths of the semi-major and semi-minor axes are 
 

 

   
 

 

1 2 3

1 2 3
2 2 2

2 2

5 2 1 34 2 37 2 1 19 1
1 1

2 5 10 15 5 15 5 5 15 5

7 4 1 1 4 1 2 2
1 1

45 15 5 9 15 15 9 15

61 1 79 3 1 61 41

45 3 90 10 135 270

d

c

c

c

a

M
q q

r T

r
r T

      
  

 
  

 

     
              

     

     
                

      

   
        

   
2

4

135 

     
   

           (24)

 

 

  

 
The eccentricity of the ellipse is represented in 
equation (22) and gives the value by which the 
orbit departs from been circular. Clearly, the 
eccentricity of elliptical orbits depends on the 
mass ratio, small change in the centrifugal force, 
oblateness of the three bodies and radiation 
pressure of the stars. The lengths of the semi-

major axis, a  and the semi-minor axis, b of the 
elliptical orbits have been calculated and given in 
equations (24) and (25), respectively. Table 7 
below gives the effect of the perturbed forces on 
the eccentricity, semi-major and semi-minor axes 
of the elliptic orbits, using equations (22), (24) 
and (25), respectively. From the Table 7, the 
lengths of the semi-major and minor axes in the 
case of the classical RTBP (row 1) are 1.4589 
and 1.0772, respectively. Using this as a metric, 
we can estimate the effects of each perturbing 
force on the lengths of the semi-axes. Row 2 is 
the case when the primary star is a radiating 
source. Due to the radiation pressure, an 
increase is noticed in the lengths of both semi-
axes. When the secondary star is a radiating 

body (row 3) a decrease in the lengths of both 
semi-axes is observed. In the case when both 
stars are radiating bodies (row 4); the length of 
the semi-major axis increases while the length of 
the minor-axis reduces. The increase and 
decrease in the lengths of the major and minor 
axes are aided by the radiation pressure of the 
primary and secondary star, respectively. Row 5, 
6 and 7 show the numerical values of effects of 
oblateness of the primary star, secondary star 
and the infinitesimal mass, respectively. Here, 
oblateness of the primary star yields an increase 
in the lengths of the semi-axes while oblateness 
of the secondary star and the infinitesimal mass 
produce an increase in the length of the major 
axes and a reduction in the length of the semi-
minor axes.  
 
The small perturbation in the Coriolis force does 
not affect the lengths of the semi-axes since both 
lengths (row 8) coincide with those (row 1) of the 
classical RTBP. This fact is also clearly noticed 
in equations (24) and (25). The centrifugal 
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perturbation however affects the lengths of the 
semi-axes as its presence yields a decrease in 
the lengths of both semi-axes. An increase in the 
amount of the accumulated materials around the 
stars leads to a decrease in the lengths of the 
semi-axes (row 10). This means that an increase 
in the accumulated materials brings the 
infinitesimal mass closer to the triangular 
equilibrium points. When the stars are both 
radiating and the bodies in the configuration have 
the shape of an oblate spheroid, the combined 
actions of these perturbing forces increases the 
length of the semi-major axes of the elliptic orbits 
around the triangular points (row 14). 
 
Below in Fig. 6, we plot some graphs to show the 
effect of the perturbing forces on the lengths of 

the semi-axes of the elliptic orbits around linearly 
stable triangular points. 
 
The panel (a) describes the difference in the 
lengths of the semi-axes of the elliptic orbits for 
the classical model (inner path) and when the 
problem is modeled to include oblateness of the 
primary star (outer path). The diagram in panel 
(b) compares the lengths of the semi-major and 
minor axes of the ellipse. The inner and outer 
path correspond to that of classical case and 
generalized model, respectively while the lengths 
of the axes for the classical problem, model with 
oblate primary star and the generalized model, 
are presented in panel (c). The last diagram in 
panel (d) is the combined plots of all the cases 1 
to 17 in Table 7. 
 

(a)                                                                                                  (b) 

 
(c)                                                                                               (d) 

 
 
Fig. 6. Semi-major and minor axes of the elliptic orbits around triangular equilibria in the case 

of (a) classical model (inner path) and formulation with oblate bigger star (outer path) (b) 
classical model (inner) and generalized formulation (outer) (c) classical model (inner path), 

formulation with oblate primary star and generalized model (d) combined plots of all the 
different formulations 
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Table 7. Effect of perturbed forces on the eccentricity and semi-axes of the orbits 
 

S/N            

1 1 1 0 0 0 0 0 0 0.30378 1.4589 1.0772 

2 0.9988 1 0 0 0 0 0 0 0.30426 1.4595 1.0774 

3 1 0.9985 0 0 0 0 0 0 0.30437 1.4586 1.0758 

4 0.9988 0.9985 0 0 0 0 0 0 0.30485 1.4592 1.0760 

5 1 1 0.024 0 0 0 0 0 0.51541 1.5145 1.1582 

6 1 1 0 0.02 0 0 0 0 0.49371 1.5093 1.0219 

7 1 1 0 0 0.015 0 0 0 0.35037 1.4818 1.0766 

8 1 1 0 0 0 0.001 0 0 0.30378 1.4589 1.0772 

9 1 1 0 0 0 0 0.002 0 0.31392 1.4578 1.0732 

10 1 1 0 0 0 0 0 0.01 0.27636 1.4519 1.0551 

11 0.9988 1 0.024 0 0 0 0 0 0.51588 1.5151 1.1584 

12 0.9988 0.9985 0.024 0 0 0 0 0 0.51647 1.5148 1.1570 

13 0.9988 0.9985 0.024 0.02 0 0 0 0 0.70640 1.5652 1.1016 

14 0.9988 0.9985 0.024 0.02 0.015 0 0 0 0.75298 1.5880 1.1010 

15 0.9988 0.9985 0.024 0.02 0.015 0.001 0 0 0.75298 1.5880 1.1010 

16 0.9988 0.9985 0.024 0.02 0.015 0.001 0.002 0 0.76312 1.5869 1.0969 

17 0.9988 0.9985 0.024 0.02 0.015 0.001 0.002 0.01 0.73570 1.5799 1.0748 
 

1q 2q 1 2 3  
dM

e a b
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Table 8. Effects of increase in mass of accumulated materials around the stars on the eccentricity, semi-axes and orientation of the elliptic orbits 

for 1 0.9988q  , 2 0.9985q  , 1 0.024  , 2 0.02  , 3 0.015  , 0.001 , 0.002   

 

dM  e  a  b    

0 0.76312 1.5869 1.0969 2.4208 

0.001 0.76038 1.5862 1.0947 2.7448 

0.005 0.74941 1.5834 1.0859 4.0331 

0.009 0.73844 1.5806 1.0770 5.3052 

0.01 0.73570 1.5799 1.0748 5.6201 

0.02 0.70827 1.5729 1.0527 8.6839 

0.03 0.68085 1.5659 1.0306 11.5562 

0.04 0.65343 1.5590 1.0085 14.2028 

0.05 0.62600 1.5520 0.9863 16.6095 

0.06 0.59858 1.5450 0.9642 18.7780 

0.07 0.57115 1.5380 0.9421 20.7208 

0.08 0.54373 1.5310 0.9200 22.4561 

0.09 0.51630 1.5240 0.8979 24.0047 

0.099 0.49162 1.5177 0.8780 25.2558 

0.0999 0.48915 1.5171 0.8760 25.3742 
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Table 9. Effects of potential of the cluster on elements of the elliptic orbits for 1 0.9988q  , 2 0.9985q  , 1 0.024  , 2 0.02  , 3 0.015  ,  

0.001 , 0.002   
 

T   ( 0.01

           =0.02

           =0.04)

de M 

 

 ( 0.01

           =0.02

           =0.04)

da M 

 

 ( 0.01

           =0.02

           =0.04)

db M 

 

 ( 0.01

            =0.02

            =0.04)

dM 

 

0 0.735692 
0.708259 
0.653392 

1.57998 
1.57298 
1.55899 

1.07484 
1.05272 
1.00848 

5.6211 
8.6858 
14.2060 

0.0001 0.735692 
0.708259 
0.653392 

1.57998 
1.57298 
1.55899 

1.07484 
1.05272 
1.00848 

5.6211 
8.6858 
14.2060 

0.0005 0.735692 
0.708259 
0.653392 

1.57998 
1.57298 
1.55899 

1.07484 
1.05272 
1.00848 

5.6211 
8.6858 
14.2060 

0.001 0.735693 
0.708259 
0.653392 

1.57998 
1.57298 
1.55899 

1.07484 
1.05272 
1.00848 

5.6211 
8.6858 
14.2060 

0.002 0.735693 
0.708259 
0.653392 

1.57998 
1.57298 
1.55899 

1.07484 
1.05272 
1.00848 

5.6211 
8.6858 
14.2060 

0.005 0.735695 
0.708264 
0.653401 

1.57998 
1.57298 
1.55899 

1.07484 
1.05272 
1.00848 

5.6211 
8.6854 
14.2052 

0.009 0.7357 
0.708274 
0.653422 

1.57998 
1.57299 
1.559 

1.07484 
1.05273 
1.0085 

5.6203 
8.6482 
14.2034 

0.01 0.735702 
0.708278 
0.65343 

1.57998 
1.57299 
1.559 

1.07485 
1.05273 
1.0085 

5.6201 
8.6879 
14.2028 

0.02 0.73573 
0.708335 
0.653544 

1.57999 
1.57301 
1.55904 

1.07486 
1.05277 
1.00857 

5.6171 
8.6782 
14.1932 
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Table 10. Deviations of the orbital elements from the classical case due to the perturbing forces 
 

cases Parameter 
forces 

Frequency Period Angle of 
rotation 

eccentricity Semi-major Semi-minor 

1 
1q  Decreases Increases Increases Increases Increases Increases 

2 
2q  Decreases Increases Increases Increases Decreases Decreases 

3 
1  Decreases Increases Increases Increases Increases Increases 

4 
2  Decreases Increases Decreases Increases Increases Decreases 

5 
3  Decreases Increases Increases Increases Increases Decreases 

6   Decreases Increases No effect No effect No effect No effect 

7   Decreases Increases Decreases Increases Decreases Decreases 

8 
dM  Decreases Increases Increases Decreases Decreases Decreases 

1 and 2  Decreases Increases Increases Increases Increases Decreases 

1,2 and 3  Decreases Increases Increases Increases Increases Increases 

1,2,3,4  Decreases Increases Increases Increases Increases Increases 

1,2,3,4,5  Decreases Increases Increases Increases Increases Increases 

1,2,3,4,5,6  Decreases Increases Increases Increases Increases Increases 

1,2,3,4,5,6,7  Decreases Increases Increases Increases increases increases 

1,2,3,4,5,6,7,8  Decreases Increases Increases Increases Increases Decreases 
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Table 8, provides numerical evidence that an 
increase in mass of accumulated materials 
around the stars result in a decrease in the 
eccentricity, and lengths of the semi-axes                      
while it increases the angle of rotation of the 
principal axis. The same result is also seen in 
Table 9 below, where we take into account 
effects of the density profile of the circular cluster 
of material points on the eccentricity, semi-                   
axes and the angle of rotation of the principal 
axis. 
 
Finally, from our numerical efforts we can weigh 
the deviations of the frequency, angle of rotation, 
period, eccentricity and lengths of the semi-axes 
from the classical numerical estimations due to 
the effect of the perturbing forces. We give this in 
a tabular form in Table 10 for easy 
understanding. 
 
Here the increase or decrease is a measure of 
the deviation from the classical estimations. 
 

5. DISCUSSION AND CONCLUSION 
 

The analytical and numerical investigation of 
effect of perturbing forces on periodic orbits 
around linearly stable triangular equilibrium 
points of the RTBP has been carried out when 
motion of an oblate infinitesimal mass takes 
place in the presence of cluster of material, small 
perturbations in the Coriolis and centrifugal 
forces, radiation pressure and oblateness of the 
primaries. This is a generalized study of 
researches performed by Singh and Haruna [12], 
Singh and Leke [13], Abouelmagd and EL–
Shaboury [11], AbdulRaheem and Singh [9], 
Perdios and Kalantonis [8], Perdios [7] and 
several others. Clearly, the equations of motion 
of this study and those of Singh and Haruna [12] 
differ because of the potential of the circular 
cluster of material points which we have included 
in this investigation, while the difference between 
these equations and those given in 
AbdulRaheem and Singh [9] are due to 
oblateness of the infinitesimal mass and potential 
from the cluster. The same differences are seen 
in the coordinate of the triangular equilibrium 
points. Now, equations (6) and (7) give the 
equations of the frequencies for the long and 
short period orbits, respectively. These equations 
have an additional term due to the cluster around 
the primaries which does not appear in the 
obtained expression for the frequency of the long 
period orbits calculated in Singh and Haruna 
[12]. However, in the absence of the circular 
enclosure, these expressions fully coincide. They 

however differ from those found in AbdulRaheem 
and Singh [9], not only because of the inclusion 
that the infinitesimal mass has the shape of an 
oblate spheroid and the primaries enclosed by 
accumulated materials but also in the  
coefficients of the oblateness of the more 
massive primary.  
 
Equation (17) gives the angle of rotation of the 
principal axis of the elliptic orbits in terms of the 
parameters, representing the radiation pressure 
of the stars, oblateness of the bodies, cluster of 
materials and small perturbation in the centrifugal 
force. The Coriolis perturbation has no effect on 
how the axes are oriented. Equation (17) shows 
that the orientation of these orbits may increase 
or decrease. This will depend on the parameters 
of the system.  If an increase or decreases occur, 
then this will produce a change in the orientation 

of the orbits along the  coordinate. This 

equation (17) coincides with that in the absence 
of cluster of materials fully coincide with the one 
in Singh and Haruna [12] Some of the 
coefficients of the system parameters of our 
problem are same with some in AbdulRaheem 
and Singh [9], except for what seems like a 
typographic error in the coefficient of the 
oblateness of the more massive star, this error 
was also spotted in the paper by Singh and 
Haruna [12]. 
 
The eccentricity of the elliptic orbit given in 
equation (22) depends on the system parameters 
except the small perturbation in the Coriolis 
force, and differs from that in Singh and Haruna 
[12] and AbdulRaheem and Singh [9]. It should 
be noted that the coefficients of the radiation 
factors in (22) are different from those in Singh 
and Haruna [12]. The lengths of the semi-axes 
have been calculated in equations (24) and (25). 
It is seen that the lengths are not affected by the 
Coriolis perturbation and differ from those of 
previous studies due to the presence of cluster of 
matters around the stars. We observed that 
these lengths and those in Singh and Haruna 
[12] have some terms which fully coincide and 
some which do not; for instance, the coefficients 
of the radiation factors. 
 
Finally, from our numerical explorations of the 
problem which is interpreted in Table 10, we can 
make the following statements that: 
 

i. All perturbing forces reduces angular 
frequency 

ii. All perturbing forces increases time period 
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iii. Radiation pressure of the bigger star 
increases angle of rotation of principal 
axis, eccentricity and lengths of the semi-
major and semi-minor axes of the orbits, 

iv. Radiation pressure of the smaller star 
increases angle of rotation and eccentricity 
but reduces lengths of both semi-axes. 

v. When both stars are radiating spherical 
bodies, lengths of semi-major axis 
increases while the minor-axis decreases,  

vi. Oblateness of the bigger star increases 
angle of rotation, eccentricity and lengths 
of  semi-axes of the orbits,  

vii. Oblateness of the smaller star increases 
eccentricity and length of semi-major axis 
but reduces angle of rotation and length of 
minor axis.  

viii. Oblateness of infinitesimal mass increases 
angle of rotation, eccentricity and length of 
major axis but reduces length of minor 
axis. 

ix.  Presence of the cluster of material points 
increases angle of rotation but reduces 
eccentricity and lengths of semi-axes.  

x. In the presence of oblateness of the bigger 
star and absence of cluster, the semi axes 
increase always. 

xi. Small perturbation in the Coriolis force 
does not affect angle of rotation, 
eccentricity and lengths of semi-axes  

xii.  Small centrifugal perturbation increases 
eccentricity but reduces angle of rotation 
and lengths of the semi-axes.  

xiii. Of all the perturbing forces only cluster of 
materials reduces eccentricity.  

xiv. Radiation pressure and oblateness of the 
bigger star have same effect on the 
structure of the orbits. 

xv. Under combined effect of the perturbing 
forces, the period, angle of rotation, 
eccentricity and length of semi-major axis 
all increases, while frequency and length 
of semi-minor axis reduces.  

 
These facts are not directly observable from the 
analytic solutions obtained except (xi). 
 

Our study has relevance in motion of planets 
around binary systems, where planets have 
masses infinitesimally small. A simple question of 
celestial mechanics is: how long can the 
triangular equilibrium points keep the infinitesimal 
mass in orbit from escaping? The determination 
of ranges of semi-major axis taking into account 
the perturbing forces may help to know if body is 
likely to remain or escape. Now, since under 
combined effect of the perturbing forces, the 

period, angle of rotation, eccentricity and length 
of semi-major axis all increases, we conclude the 
infinitesimal mass is likely to escape under the 
combined effect of radiation, perturbations, 
oblateness and cluster of materials. However, 
with increasing accumulation of materials, the 
infinitesimal mass will remain in orbit around the 
triangular points as its effect will override other 
perturbing forces and reduce the length of the 
semi-major axis.  
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