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ABSTRACT 
 

Forests in Sub-Saharan Africa are experiencing some of the highest rates of deforestation and 
degradation in the world, with most natural forest species being replaced by cropland and plantation 
monoculture. In this work, a method was developed that combined the Synthetic Aperture Radar 
(Sentinel-1) and optical satellite imagery (Sentinel-2) data to accurately map natural forest and 
perennial crops (oil palm) in Ghana. This was done using all three variables including spatial, 
spectral, and temporal variables to assess the most important variables in characterizing oil palm 
and natural forest, as well as the added value of sentinel-1 SAR data in a sentinel-2 optical-based 
classification. In this workflow, the Gray level co-occurrence matrix (GLCM) was calculated as 
representing textural/spatial variables, a yearly median composite to represent the spectral 
variables, and raining and dry season composites of Normalized Difference Vegetation Index 
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(NDVI) and Normalized Difference Moisture Index (NDMI) to represent the temporal variables for 
the Sentinel-2 data. In terms of the SAR data, rainy and dry season composites of NDVI and NDMI 
were calculated. With all these variables together, a characterization of the study area was 
conducted based on reference data of the land use land cover classes including oil palm, natural 
forests, and croplands (others) using Random Forest classifier. The variable importance of the 
Random Forest model was investigated to identify the top 10 most important variables. Results 
from this study showed that spectral variables followed by spatial variables are the most important 
and need to be considered when characterizing oil palm and natural forest, which is consistent with 
some pieces of literature. The use of sentinel-2 data achieved an acceptable classification accuracy 
(75%); whereas, sentinel-1 SAR further increased the accuracy (up to 85%) as compared to 
sentinel-2 only.  
 

 
Keywords: Mapping; plantation; forests; oil palm. 
 
1. INTRODUCTION 
 
About 4.7 million ha/year of net forest loss occurs 
globally and a 3 million ha/year increase in 
plantation forests has been recorded between 
the years 2010 and 2020 by the Food and 
Agriculture Organization of the United Nations 
(FAO, 2020). Forest changes have been 
attributed to certain drivers such as the 
conversion of land use/ land cover (LULC) for the 
production of commodities, agriculture shifting, 
forestry, urbanization, and wildfires [1]. The 
modifications of the land have impacted the 
environment negatively including the increase in 
greenhouse gas emissions, disruption of the 
water cycle, increase in soil erosion, biodiversity 
loss, and local livelihoods disruption [2]. To 
overcome these problems, some policies and 
frameworks have been proposed and 
implemented from local to global scale levels, 
with the emphasis on detailed and accurate 
measurements of forest types [3]. Mapping 
natural and plantation forests can provide 
accurate input for the detection of deforestation, 
climate change, carbon assessment, and 
detection of biodiversity loss. 
 
Some studies on mapping perennial crops and 
natural forests have been done and they utilized 
remote sensing data through different 
approaches. One typical approach is to use 
phenological characteristics of some specific 
plantation types based on time series satellite 
sensor imagery [3]. An example of a study using 
this approach adopted the difference in spectral 
characteristics of the defoliation period of 
deciduous rubber to separate it from natural 
forests [4]. Another approach has been to use 
image processing techniques to enhance the 
characterization of plantation forests and natural 
forests. Textural analysis has been specifically 
used to differentiate the unique spatial pattern of 

the targeted perennial crops, e.g., oil palm fields 
from other surrounding land covers [4]. 
Moreover, vegetation indices were incorporated 
to amplify the differences in mapping plantations 
as well as natural forests, such as NDVI, 
enhanced vegetation index (EVI), soil-adjusted 
total vegetation index (SATVI), normalized 
difference tillage Index (NDTI), and land surface 
water index (LSWI). In addition, the development 
of radar satellite sensors has been seen its 
involvement in LULC mapping as well as forest 
monitoring (The SAR Handbook, 2019). 
Synthetic Aperture Radar (SAR) images have 
been used widely in forest mapping at both 
global and regional scales since they can provide 
cloud-free structural information sensitive to 
forest cover [5]. Another approach that recent 
studies have frequently used is the combination 
of optical and SAR imagery [6].  The common 
issue that runs through all this research as 
outlined above is that the focus is on using a 
subset of variables only. That is, either spectral, 
spatial, and temporal variables or a combination 
of two out of the three variables for such 
classifications and this creates problems that 
might affect the classification accuracies. For 
accurate classification of landcover, there is the 
need to look at all variables to improve the 
accuracy of classification. This study was to find 
out which variables (spatial, spectral, and 
temporal) variables are of influence when 
mapping natural forests and perennial crops. 
This was done by considering all variables 
(spectral, spatial, and temporal) rather than a 
subset of such variables.   
 
Also, studies on mapping perennial crops have 
mainly used single-temporal medium or high-
resolution optical images for oil palm plantation 
recognition. This yielded a low identification 
accuracy with the former, though much improved 
when using the latter [7]. However, high-
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resolution image data have generally been 
expensive and unable to provide high temporal 
resolutions, making it difficult to identify and 
monitor oil palm plantations at high temporal 
frequencies over large areas. In this context, a 
combination of sentinel-2 and sentinel-1 is used 
for monitoring oil plantations in the study area 
imagery.  
 
The objective of this paper is to increase 
accuracy in mapping natural forest and perennial 
crops (oil palm) in Ghana, using remote sensing 
data. The specific objectives were: (1) assess the 
most important variable to be considered when 
characterizing natural forest and perennial crops 
in Ghana; (2) evaluate the classification 
performance of the satellite data with sentinel-2 
data only and combined sentinel-2 and sentinel-
1.  
 
2. MATERIALS AND METHODS 
 
2.1 Study Area 
 
The Ejisu Municipality, Ghana (Fig.1) lies 
between longitude 1° 15ʹ W–1° 45ʹ W and 
latitude 6° 15ʹ N–7° 00ʹ N and falls within the 
forest-dissected plateau terrain of Ghana. The 
municipality stretches over an area of about 
637.2km2. It has a tropical and wet semi-

equatorial climate with annual average 
temperatures ranging from 200C in August to 
320C in March and a mean annual rainfall of 
1200mm, mainly from March to July, with high 
relative humidity during this period. The main 
agronomical tree crops grown in the area are 
maize, cocoyam, plantain, cassava, citrus, 
cocoa, and oil palm. Since the area has a variety 
of forest types, it was suitable as a testing area 
for classification. 
 
2.2 Methods  
 
The overall workflow of establishing the high-
resolution LULC map for Vietnam is illustrated in 
Fig. 2. 
 
2.3 Class Definitions 
 
For land cover classification, three main classes 
were identified from satellite and aerial images 
with local knowledge of the study area as well as 
land use land cover maps from other research 
conducted within the study area. These are the 
oil palm, natural forest, and others (croplands). 
The final land cover delineated as others were 
defined as croplands such as maize, cocoyam, 
plantain, cassava, citrus, cocoa, and grasslands. 
An overview of the defined classes is shown in 
Fig. 3. 

 

 
 

Fig. 1. Map of the study area 
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Fig. 2. Workflow for data acquisition, pre-processing, and validation 
 

 
 

Fig. 3. Aerial imagery examples of land cover classes within the study area (Google, 2020c) 
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2.4 Training and Validation Data 
 

To acquire reference samples from the study as 
training and validation data, we made use of 
existing landcover datasets, local studies, and 
satellite images. The land cover dataset used 
was the Forest cover data of the Copernicus 
Global Land Service 
(https://land.copernicus.eu/global/products/lc) 
which shows the global fraction of vegetation 
cover (FCover) corresponding to the fraction of 
ground covered by green vegetation. This helped 
to limit the extent of the study to only forest cover 
and aided the collection of the training and 
validation data. Other sources of reference for 
the data collection are described in Tables 1 and 
2. 
 
The forest cover data from the Copernicus 
Global Land Services was loaded within the 
google earth engine for visual assessment and 
interpretation of the land cover within the study 
area.  Training and validation data were collected 
in Google Earth Engine (GEE) and overlaid the 
forest cover data. We collected about 10000 
randomly generated sample points to ensure that 
the entire area was adequately covered. A buffer 
of 25 meters was specified around all the points 
generated to avoid placement of multiple random 
samples within the same pixel resulting in 
multiple representations of the same training or 
validation sample. About 960 points out of the 
10000 were assessed and created by visual 
interpretation from google earth imagery and 
existing knowledge of the area to see which 
class they represent. 
 
Points for three classes, (200 for oil palm, 380 for 
natural forest, and 380 for others) were collected. 
This was because increasing the number of 
classes for natural forests and others(croplands) 
gave a better representation of the overall spatial 
distribution of the mapped classes. The classes 
in question were labeled (Natural forest, Oil palm 
plantation, and others). The Others class is made 
up of croplands such as maize, cocoyam, 
plantain, cassava, citrus, cocoa, etc. Fig. 4. 
 
2.5 Data Pre-processing and Variable 

Extraction 
 
2.5.1 Sentinel-2 and sentinel-1 data pre-

processing 
 
Sentinel-2 data over a one-year (2018) period 
was acquired and pre-processed in GEE, where 
the images were provided as a Level-1C product 

that represents Top of Atmosphere (TOA) 
reflectance. The resolution of the images 10-
meter for the shorter wavelengths and 20-or 60-
meter resolution for longer wavelengths or 
narrower bandwidths. We selected only images 
with a cloud cover of less than 2%. As part of the 
filtering, the following bands which are 
considered important as far as vegetation 
analysis are concerned (B2, B3, B4, B5, B8, 
B12) representing (Blue, Green, Red, Red-Edge, 
NIR, SWIR) respectively were selected for the 
analysis. The selection of these bands stern from 
the fact that, with an increase in data dimension, 
the computational and storage costs will also be 
sharply increased.  
 
According to [8], the red and NIR bands are 
usually regarded as important bands for forest 
cover estimation since the NIR band shows high 
reflectance for green vegetation due to its high 
internal leaf scattering, while the red bands show 
low reflectance due to chlorophyll absorption with 
the increase in forest vegetation cover. They 
further emphasize that the red-edge band has a 
high correlation with the various physiological 
vegetation parameters, such as nitrogen content, 
chlorophyll content, and biomass, hence also an 
important indicator to describe the status of plant 
pigments and health. The blue band has low 
reflectance over the vegetation canopy because 
of the strong absorption of chlorophyll but it is 
vital for vegetation monitoring using remote 
sensing data, making it important for vegetation 
analysis as well. Hence, justifying our selection 
of the Blue, Green, Red, Red-Edge, NIR, and 
SWIR bands.  
 
The sentinel-1 Level-1 Ground Range Detected 
(GRD) data with a resolution of 10-m and the 
Interferometric Wide Swath (IW) instrument 
mode was also acquired and preprocessed in 
GEE. Image within the study area was acquired 
in the ascending mode, which means that the 
side-looking orientation of the sensor is always 
the same, namely west to east. The sentinel-1 
data covered a full 1-year period of 2018 just as 
in the case of the Sentinel-2 data. This covers a 
cycle of both rainy and dry seasons (between 
April and October for rainy and between 
November and March for dry season). This 
selection resulted in a total of 38 sentinel-1 
images each for both dry season and rainy 
season with a 3-day revisit time, which is enough 
for accurate classification. Some radiometric 
calibration, which computes backscatter intensity 
using sensor calibration parameters in the GRD 
metadata, also areas with extremely high and 
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Table 1. Definition of local studies used as input for the selection of training and validation samples 
 

Author/reference Description
[9] Oil Palm Mapping using Support Vector Machine with Landsat ETM+ Data 
[10] Unsustainable Management of Forest in Ghana from 1900-2010 
[11] Effects of Tree-crop Farming on Land-cover Transitions in a Mosaic Landscape in the Eastern Region of Ghana

 
Table 2. Description of aerial images used as input for the selection of training and validation samples 

 
Dataset  Description Author/reference
Google Earth images High-resolution global composition of aerial images and satellite images in different scales and 

from different dates 
Google (2020c) 

Microsoft Bing Maps  High-resolution global composition of aerial images and satellite images in different scales (Microsoft Bing Maps, 2020) 
 

 
 

Fig. 4. Training and validation samples collected for classification 
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low incidence angles were excluded. This 
resulted in masking out the edges of all images. 
These images were then clipped to the extent of 
the study area and generated as a composite. 
 
2.5.2 Spatial (textural) variable extraction 

from pre-processed sentinel-2 data 
 
Spatial (textural) information relates to the 
structural features of the target surface and the 
surrounding environment, which can also reflect 
spatial variation in land cover. As such, the 
textural features can be extracted by statistical, 
structural, and spectral methods [12]. The 
potential for textural features from satellite 
images to be used in the identification of crops 
has been demonstrated to be significant [13]. In 
this research, the Gray level co-occurrence 
matrix (GLCM) method of textural feature 
extraction was used. 
 
2.5.3 Gray level co-occurrence matrix (GLCM) 
 
The GLCM is a classic method of texture 
(spatial) feature extraction, which is effective in 
image recognition, segmentation, retrieval, 
classification, and texture analysis method. It has 
been extensively employed in many fields and 
has been continuously improved [14]. The 
principal concept of GLCM is that the texture 
information contained in an image is defined by 
the adjacency relationships that the gray tones in 
an image have to one another.  The matrix 
element P (i, j | d, Ɵ )  contains the second-order 
statistical probability values for changes between 
gray levels i and j at a particular displacement 
distance d and a particular angle Ɵ. Instead of 
using the frequency values in a GLCM directly, it 
is common practice to normalize them to the 
range [0, 1] to avoid scaling effects. Resolution of 
the image, the land cover under consideration, 
and the scale of the different features. From 
various literature readings, if the window size is 
too small, then it does not contain enough 
information about the area to perform an 
accurate analysis, also if the size is too large, 
then it can overlap with other types of ground 
cover and produce erroneous results. Since the 
area of study has land cover types that are close 
to each other and for that matter,            there is 
a possibility of these land cover overlapping, a 
medium window size was used. A table overview 
of GLCM equations is presented in Table 3 with 
their meanings. 
 
 

2.5.4 Selection of spatial variables from 
GLCM computations 

 

The variable importance test of the random forest 
model based on the training data was used to 
estimate the important variables. This resulted in 
a list of variables ranked according to their 
importance. The first six variables according to 
their mead decrease accuracies were then 
selected for further analysis to represent spatial 
variables. An overview of these variables is 
shown in Table 4.    
 

2.5.5 Temporal variable extraction from 
sentinel-2 data 

 

In this research, we acquired one year of 
sentinel-2 data over two seasons: dry and wet 
based on filtering by the dates for both dry and 
wet seasons in Ghana.  This was provided by the 
Ghana Meteorological Agency (GMET) as shown 
in Fig. 4. Filtering based on a selection of the 
most important bands (Blue, Green, Red, Red-
Edge, NIR, SWIR) as far as vegetation cover 
estimation is concerned was performed. 
Functions were created to mask out clouds, 
using Bits 10 and Bits 11 represented as clouds 
and circus respectively for both dry and wet 
seasons. From the preprocessed sentinel-2 data, 
mainly two vegetation indices were performed, 
namely, the Normalized Difference Vegetation 
Index (NDVI) and the Normalized Difference 
Moisture. Index (NDMI). These variables were 
then extracted based on the training data of the 
960 points (Fig. 3) for both dry and rainy 
seasons. 
 

2.6 Spectral Variable Extraction 
  

Spectral features (median) of the selected bands 
were extracted from the sentinel-2 data in google 
earth engine. The median is another way to 
measure the center of a dataset, it is an 
attractive statistic to use for compositing. This is 
because the median can take care of outliers, 
thus, it is not easily affected by outliers. The table 
below shows the various bands for which their 
medians were extracted to represent the spectral 
variable. 
 

2.6.1 Sentinel-1 variable extraction and 
variable importance 

 

The mean values of VV and VH backscattering 
values for both rainy and dry season were 
extracted from the sentinel-1 data and used for 
the land cover classification, complemented with  
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Table 3. Overview of GLCM computations, meaning, and their equations 
 

S1. No Feature Meaning Equation
1 asm1, asm2, asm3, asm4, asm5, asm6,  Angular second 

moment  
 

2 contrast1,contrast2, contrast3,contrast4, 
contrast5,contrast6 

Contrast  

3 corr1, corr2, corr3, corr4, corr5, corr6 Correlation
4 var1, var2, var3, var4, var5, var6 Variance ;  ;  
5 idm1, idm2, idm3, idm4, idm5 idm6 Inverse Difference 

Moment 
 

6 savg1, savg2, savg3, savg4, savg5, savg6 Sum Average (Mean)
7 svar1, svar2, svar3, svar4, svar5, svar6, Sum Variance  
8 sent1, sent2, sent3, sent4, sent5, sent6 Sum Entropy  
9 ent1, ent2, ent3, ent4, ent5, ent6 Entropy  
10 dvar1, dvar2, dvar3, dvar4, dvar5, dvar6 Difference Variance  
11 dent1, dent2, dent3, dent4, dent5, dent6 Difference Entropy  
12 Imcorr1_1, imcorr1_2, imcorr1_3, imcorr1_4, 

mcorr1_5, imcorr1_6 
Information Measures 
of Correlation 1 

 

13 Imcorr2_1, imcorr2_2, imcorr2_3, imcorr2_4, 
mcorr2_5, imcorr2_6 

Information Measures 
of Correlation 2 

 

14 maxcorr1, maxcorr2, maxcorr3, maxcorr4, 
maxcorr5, maxcorr6 

Maximal Correlation 
Coefficient 

 

15 diss1, diss2, diss3, diss4, diss5, diss6 Dissimilarity  
16 inertia1, inertia2, inertia3, inertia4, inertia5, 

inertia6 
Inertia  

17 shade1, shade2, shade3, shade4, shade5, 
shade6 

Shade  

18 Prom1, prom2, prom3, prom4, prom5, prom6 Prominence  
For detailed explanations of calculations, see Hall-Beyer (2007) and Gonzalez and Woods (1992).Pi,j is the probability of values I and j occurring in adjacent pixels in the 

original image within the window defining the neighborhood. I and j are the labels of the columns and rows (respectively) of the GLCM 
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Table 4. Overview of selected spatial variables 
 

Variables Meaning Mean Decrease Accuracy
ent.3 Entropy of band 4 (red) 13.593365
idm.3 Inverse Difference Moment of band 4 (red) 13.493740 
idm.6 Inverse Difference Moment of band 12 (SWIR) 13.297509 
asm.3 Angular second moment of band 4 (red) 13.173867
dent.5 Difference Entropy of Band 8 (NIR) 13.159718 
sent.3 Sum Entropy of band 4 (red) 12.894367 
imcorr2.6 Information Measures of Correlation 2 of band 12(SWIR) 12.820696
dent.6 Difference Entropy of band 12 (SWIR) 12.151775 
imcorr1.6 Information Measures of Correlation 1 of band 12(SWIR) 11.78822 
sent.6 Sum Entropy of band 12 (SWIR) 11.601014 
diss.5 Difference entropy of band 8 (NIR) 11.108438 
idm.5 Inverse difference moment of band 8 (NIR) 10.819887 
shade.5 Shade of Band 8 (NIR) 10.385652 
shade.4 Shade of band 5 (red edge) 10.317684 
imcorr2.3 Information Measures of Correlation 2 of band 8 (NIR) 9.930402 
imcorr1.3 Information Measures of Correlation 1 of band 4 (red) 9.888173 
asm.6 Angular second moment of band 12 (SWIR) 9.860717 
sent.4 Sum Entropy of band 5 (red edge) 9.599164 
dent.3 Difference Entropy of band 4 (red) 9.440915 
ent.6 Entropy of band 12 (SWIR) 9.299110 
var.5 Variance of band 8 (NIR) 9.257354 
sent.5 Sum Entropy of band 8 (NIR) 9.089627 
corr.5 Correlation of band 8 (NIR) 8.488786 
shade.2 Shade of band 3 (green) 8.419940 
idm.2 Inverse Difference Moment of band 3 (green) 8.356993 
corr.3 Correlation of band 4 (red) 8.292002 
imcorr1.1 Information measure of correlation 1 of band 2 (blue) 8.245279 
svar.4 Sum Variance of band 5 (red edge) 8.193131 
prom.6 Prominence of band 12 (SWIR) 7.966215 
ent.4 Entropy of band 5 (red edge) 7.933559 
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Table 5. Overview of equations for NDVI and NDMI calculation 

 
Index  Description Equation
NDVI A measure to indicate the occurrence of vegetation based on the normalized difference in NIR (band 8) 

and red (band 4) reflectance. 
 

NDMI NDMI incorporates the difference between SWIR and NIR bands and is, therefore, more sensitive to 
moisture content rather than photosynthetic activity 
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Fig. 5. Rainfall pattern within the study area for 2018 
 

Table 6. Overview of used sentinel-2 temporal variables 
 
Variable  Description
NDVI_dry A normalized difference Vegetation index to indicate the occurrence of 

vegetation for the dry season period
NDVI_rainy A normalized difference Vegetation index to indicate the occurrence of 

vegetation for the rainy season period 
NDMI_dry A measure to indicate the moisture content within the study area for the 

dry season period. 
NDMI_rainy A measure to indicate the moisture content within the study area for the 

rainy season period. 
Diff_NDVI_Dry_Rainy Difference between dry and rainy season of the Normalized Difference 

Vegetation Index 
Diff_NDMI_Dry_Rainy Difference between dry and rainy season of the Normalized Difference 

Moisture Index 
 

Table 7. Overview of selected spectral variables for classification 
 
Variables Meaning
Median_B2 Median of band 2 
Median_B3 Median of band 3 
Median_B4 Median of band 4 
Median_B5 Median of band 5 
Median_B8 Median of band 8 
Median_B12 Median of band 12 

 
the ratio between VV and VH (VV/VH) as well as 
the standard deviation for VV and VH, both dry 
and rainy season. These variables in order of 
importance as generated with the random forest 
model are shown in Table 9. The first six 
variables were then selected to be included in 
the model created with sentinel-2 data to assess 
the added value of sentinel-1 to a sentinel-2 
based classification of oil palm and natural forest. 

2.6.2 Classification method, validation and 
confusion matrix 

 
The classification was done within R studio (R 
Core Team, 2018) with Random Forest 
Algorithm. This was done by using the training 
data in constructing the decision tree. Two 
different classifications were performed using the 
random forest approach. The first classification 
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was performed with variables extracted from the 
sentinel-2 data as shown in Table 8 whiles the 
second classification combined variables from 
sentinel-2 and sentinel-1 data (Table 10). Both 
classifications were done with 70% of the 
random sample points used as training data. The 
remaining 30% were used for validation. The 
splitting into training and validation was done 
randomly before the classification was 
performed. The default parameters for the 
Random Forest algorithm were maintained in the 
classification, the number of trees set to 500. To 
limit the tree depth and prevent the trees from 
overfitting, the minimum node was set to 5. 
These parameters were kept the same for all 
classifications. The random forest algorithm 
returns three variable importance measures. 
That is the selection rate of each candidate 
variable, the Gini index of impurity reduction, and 
the permutation of the predictor variables as an 
estimate of importance [15]. The mean decrease 
accuracy which is a measure of how much the 
accuracy decreases when a variable is excluded 
was used to generate this variable importance 
due to its simplicity. For both classifications with 
the sentinel-2 data and combining both sentinel-2 
and sentinel-1 data, the confusion matrixes 
showing the overall accuracy, Kappa statistics, 
producer, and users’ accuracy were generated. 
 
3. RESULTS 
 
3.1 Variable Importance: Spatial, 

Spectral, and Temporal Variables  
 
Figs 6 and 7 show results from the variable 
importance plot of the random forest model of the 
top 10 most important variables as far as the 
spectral, spatial, and temporal variables are 
concerned. This is given regarding each class, oil 
palm, Natural forest, and the others class. 
 
In Fig. 6, it is seen that the Median of band 5 (red 
edge), a spectral variable happens to be the 
most important variable, followed by spatial 
variable known as the Sum Entropy of band 5 
(red edge), then another spectral variable of 
median band 4 for each class. The temporal 
variables appear not to be important as far as oil 
palm and natural forest characterization are 
concerned as shown by the results in Figs 6 and 
7. Among the ten variables, the temporal variable 
appears once. Generally, the spectral and spatial 
variables are important as shown in Fig 5. The 
same appears in Fig 6, where the most important 
variable happens to be the spectral variable. 
However, the temporal variables appear to be a 

little of importance in this model as seen by the 
standard deviation for the VV and VH for both 
rainy and dry seasons and the ratio between the 
bands for rainy seasons also appearing in the 
variable importance diagram.  
 
3.2 Land Cover Classification of Oil Palm 

and Natural Forest 
 
Fig. 8 and 9 illustrate the land-cover classification 
results highlighting oil palm natural forest, and 
others (croplands) using the Random Forest 
model based on spatial, spectral, and temporal 
variables. Natural forest and other croplands 
appear to dominate in the study area accounting 
for approximately 35% and 50% respectively with 
oil palm only accounting for about 15% as seen 
in Fig. 9. The general trend from the classified 
maps shows that almost all oil palm plantations 
are located in the north-eastern part of the study 
area, and these are bothered by some natural 
forest as well as croplands and, most natural 
forests are located at the eastern portions of the 
area with few patches at the west and southern 
portions of the map. Most oil palm lands are also 
found within forest areas in the study location. 
 

3.2.1 Validation of sentinel-2 and sentinel-1 
classification 

 

This study performed two separate validations, 
that is cross-validation of the model producing 
OOB error and K-fold validation. The cross-
validation of the sentinel-2 classification model 
used 672 samples and 18 predictors for the three 
classes.  The number of variables randomly 
sampled as candidates at each split (mtry) was 
10.  With mtry of 10, the average “in sample” 
accuracy was about 86%. Therefore, the 
accuracy of the random forest model is about 
86% and the OOB estimate of error rate is 
13.99%. The model with combine sentinel-2 and 
sentinel-1 data also produced quite different 
results. Again with 672 samples of the training 
data, 24 predictors for the three classes, cross-
validation of 10 folds repeated 5 times produced 
an accuracy of the optimal model using the 
largest value. With mtry of 13, the accuracy was 
about 85%. 
 

Table 11 provides the summary of land cover 
classification accuracies based on the sentinel-2 
data, and Table 12 provides land cover 
classification accuracies with the combination of 
sentinel-2 and sentinel-1 data. The table shows 
quite different accuracy results for both 
classifications. Table 11 shows that the 
classification based on only sentinel-2 data 
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yielded an overall classification accuracy of 74%. 
The individual class accuracies are shown in the 
table with oil palm recording a very low producer 
accuracy of 33% and a user accuracy of about 
64%. Most of the oil palm classes are 
misclassified as natural forest and others. Table 
12, indicates that combining sentinel-2 and 
sentinel-1 variables provides a better 
classification result. The classification procedure 

based on sentinel-2 and sentinel-1 data 
combined yields a significant improvement with 
overall accuracy increasing by 11% from 75% to 
85%. There is also an improvement in the 
individual class accuracies with the accuracy of 
oil palm increasing from 65% to 82%. The 
combination of sentinel-2 and sentinel-1 data 
yielded a better accuracy compared to only 
sentinel-2 data. 

 

 
 

Fig. 6. Variable importance for the three classes using only sentinel-2 data 
 

Table 8. All used variables for sentinel-2 classification 
 
No Variables Variable type 
1 B4_ent spatial 
2 B4_idm spatial 
3 B12_idm spatial 
4 B4_asm spatial 
5 B8_dent spatial 
6 B4_sent spatial 
7 Median_B2 spectral 
8 Median_B3 spectral 
9 Median_B4 spectral 
10 Median_B5 spectral 
11 Median_B8 spectral 
12 Median_B12 spectral 
13 NDVI_dry temporal 
14 NDVI_rainy temporal 
15 NDMI_dry temporal 
16 NDMI_rainy temporal 
17 Diff_NDVI_Dry_Rainy temporal 
18 Diff_NDMI_Dry_Rainy temporal 
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Table 9. Overview of sentinel-1 extracted and used variables 
 

Variables  Meaning Mean Decrease in Accuracy
VV_VH_SDdry 
 

Standard deviation between VV and VH of sentinel-1 data for the full 2018 period for the dry 
season. 

46.80327 

VV_VH_SD_rainy Standard deviation between VV and VH of sentinel-1 data for the full 2018 period for the rainy 
season. 

43.98977 

VVrVH_mean_dry The ratio between VV and VH for sentinel-1 data for the full 2018 period for the dry season. 43.66699 
VVrVH_mean_rainy The ratio between VV and VH for sentinel-1 data for the full 2018 period for the rainy season. 42.71625
VH_mean_rainy Mean composite of sentinel-1data of VH for the full 2018 period for the rainy season 40.54810 
VV_mean_rainy Mean composite of sentinel-1data of VV for the full 2018 period for the rainy season 40.46791 
VH_mean_dry Mean composite of sentinel-1data of VH for the full 2018 period for dry season 39.39470
VV_mean_dry Mean composite of sentinel-1data of VV for the full 2018 period for dry season 38.51086 

 

 
 

Fig. 7. Variable importance for the three classes using both sentinel-2 and sentinel-1 data 
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Table 10. Combined variables from sentinel-2 and sentinel-1 classification 
 
No Sentinel-2 Variables Variable type 
1 B4_ent spatial 
2 B4_idm spatial 
3 B12_idm spatial
4 B4_asm spatial 
5 B8_dent spatial 
6 dent5 spatial
7 Median_B2 spectral 
8 Median_B3 spectral 
9 Median_B4 spectral
10 Median_B5 spectral 
11 Median_B8 spectral 
12 Median_B12 spectral 
13 NDVI_dry temporal 
14 NDVI_rainy temporal 
15 NDMI_dry temporal 
16 NDMI_rainy temporal 
17 Diff_NDVI_Dry_Rainy temporal 
18 Diff_NDMI_Dry_Rainy temporal 
No Sentinel-1 variables Variable type 
19 VV_VH_SDdry temporal 
20 VV_VH_SD_rainy temporal 
21 VVrVH_mean_dry temporal 
22 VVrVH_mean_rainy temporal 
23 VH_mean_rainy temporal 
24 VV_mean_rainy temporal 

 

 
 

Fig. 8A. Classification results of oil palm, natural forest, and others with sentinel-2 data(left) 
and sentinel-2 combined with sentinel-1 data (right) 
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Fig. 8B. Areas of main differences in classification 
 

 
 

 
Fig. 9. Percentage area of land cover sentinel 2 
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Table 11. Confusion matrix of validation data (sentinel 2) 
 

Classification  Reference
 Oil palm NatualForest Others Total User’s Accuracy (%)
OilPalm 22 8 4 34 64.71 
NaturalForest 26 100 17 143 69.93 
Others 12 9 93 111 83.78 
Total 60 114 114 288  
Producer’s Accuracy (%) 33.66  87.72 81.58   
Overall (%)     74.65 

 
Table 12. Confusion matrix of classification using validation data (sentinel-2 and sentinel-1 data combined) 

 
Classification  Reference  

 Oil palm NatualForest Others Total User’s Accuracy(%)
OilPalm 42 5 3 51 82.35 
NaturalForest 9 102 10 121 84.10 
Others 9 7 101 117 86.32 
Total 60 114 114 288  
Producer’s Accuracy (%) 70.00  89.47 88.60   
Overall (%)     85.10 
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4. DISCUSSION 
 

Variable importance plays an important role to 
understand the contribution of an individual 
feature or group of individual features in the 
classification task [16]. Variable importance was 
therefore computed for the random forest 
classification of both sentinel-2 and sentinel-1 
data. 
 
The spectral information is often the most 
important variable in land-cover classification, 
especially for medium and coarse spatial 
resolution images [17]. Another study conducted 
by Vuolo et al., 2018 found that mono-temporal 
sentinel-2 red-edge and SWIR were important for 
mapping both tree species and crop types. 
 
This was confirmed in the study as shown in Figs 
5 and 6 that the Median band 5 (red edge) was 
the most important spectral variable. Another 
important spectral variable that showed up in the 
results was also the median of band 8 (NIR). 
This can be attributed to the presence of the red 
edge band. In research conducted by [18], where 
they tested all sentinel-2 band combinations and 
evaluated the significance of each band by 
counting the frequency each band appeared in 
the top 5% of the band combinations. They 
concluded the importance of spectral regions as 
NIR, red edge, visible, and SWIR. 
 
However, in high-resolution images, spatial 
information becomes an important feature in 
improving land-cover classification [18]. This 
study also confirmed the importance of spatial 
features, especially for the separation of natural 
forest from oil palm (Fig. 6). That is the Sum 
Entropy of Band 5 (red edge) and the Difference 
Entropy of Band 12 (SWIR). Texture or spatial 
variables have often been extracted using GLCM 
based on either a spectral image or a fixed 
window size such as 5 X 5. And the response of 
using texture variables depends on specific land 
cover types and patch sizes.  They may therefore 
be effective for some land-cover types but not 
good for others [19] For this research since the 
study area is made up of land cover types that 
are close to each other, a fixed window size of 5 
X 5 was used to ensure accurate results. 
Kapidura, [20], in his work comparing the 
different methods of textural analysis for their 
efficiency for forest classification, concluded that 
the combination of spectro-textural classification-
based approach produces a good accuracy, 
hence should be considered in the 
characterization of natural and plantation forests. 

In another study conducted by [21] to 
demonstrate the performance of sentinel-2 in 
forest mapping, accurate discrimination of the 
forest was arrived at and attributed mainly to the 
high spatial resolution, in this case, spatial 
variables available from the 10m sentinel-2 
bands and the capacity of sentinel-2 to include 
red-edge bands which also agrees with the 
results from this research. 
 
The research also identified the contribution of 
sentinel-1 in general to the sentinel-2 
classification of plantation and natural forest. As 
represented in Fig 7, the sentinel-1 variables 
such as the standard deviation between VV and 
VH of the sentinel-1 data for the full 2018 period 
for the dry season and standard deviation 
between VV and VH of sentinel-1 data for the full 
2018 period for the rainy season were shown as 
important variables in the overall variable 
importance for the characterization of plantation 
and natural forest. This is explained by the 
inclusion of the sentinel-1 data for classification 
purposes. Data from sentinel-1 were 
demonstrated to be useful for land cover 
classification as a possibility to complement the 
cloud-coverage areas [22]. These results also 
confirm the work of [22] where sentinel-1 data 
was used to show results of delineated forest 
areas in an Australian study site. 
 
In literature, overall accuracy derived from the 
confusion matrix and kappa coefficient has been 
widely used for evaluation purposes [16]. In this 
work, for the estimation of accuracy of the 
classification, Overall accuracy and Kappa 
coefficient were computed by setting the 
parameters for testing. Combining sentinel-2 and 
sentinel-1 data improved the results with an 
overall accuracy increased from 75% to 85% as 
well as Kappa Coefficients also increasing from 
0.6 to 0.7 compared to sentinel-2 only. This is 
confirmed by a study conducted by [23] where 
the combination of sentinel-2 and sentinel-1 data 
helped improve classification accuracies. A 
ground-truth validation of the sample points 
collected was also done to accurately classify the 
land cover into their respective classes. 
 
In terms of classification output, the research 
produced a LULC map that is of good quality with 
a higher resolution (10m). Also, while most 
previous LULC maps of Ghana categorized 
forest and plantation as one class, this map has 
three different classes (natural forests, oil palm 
plantation, and others which represent croplands 
such as cocoa, maize, rubber, cassava, among 



 
 
 
 

Elisha et al.; JGEESI, 25(5): 1-20, 2021; Article no.JGEESI.69347 
 
 

 
19 

 

others). This can offer better support for forest 
monitoring initiatives such as REDD+, LULC 
change, national forest inventory, etc.  
 
5. CONCLUSION 
 
The study utilized remote sensing data to create 
a high-resolution LULC map that aimed to 
distinguish natural forest and plantation forest (oil 
palm) in Africa, with Ghana as a case study. This 
approach comprised of using only sentinel-2 data 
for classification first and then combining 
sentinel-2 with sentinel-1 data. 
 
In characterizing natural and plantation forests 
the research decided to utilize all three data 
variables (spatial, spectral, and temporal 
variables) in assessing the most important 
variable to be considered for such 
characterization. The spectral variables followed 
by spatial variables are most important and 
should be considered when characterizing 
plantation and natural forest. The use of only one 
or two of the three variables is good for oil palm 
characterization, however, including all spatial, 
spectral, and temporal variables gives a very 
detailed analysis of land cover characterization 
and increases the accuracy. Combining sentinel-
2 and sentinel-1 data improved the results with 
an overall accuracy increased from 75% to 85% 
as well as Kappa Coefficients also increasing 
from 0.6 to 0.7 compared to sentinel-2 only. The 
study, therefore, confirms the feasibility of 
producing accurate LULC maps in the era of big 
data or Earth observation. There is also the need 
to produce such maps in historical periods to 
have spatially explicit insights into the constraints 
of plantation and natural forest dynamics with 
socio-economic and policy backgrounds in 
Ghana. 
 
COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 
1. Curtis PG, Slay CM, Harris NL, Tyukavina 

A, Hansen MC. Classifying drivers of 
global forest loss. Science. 
2018;361(6407):1108–1111.  
Available:https://doi.org/10.1126/science.a
au3445 

2. Barlow J, Lennox GD, Ferreira J, 
Berenguer E, Lees AC, Nally R. Mac, 
Thomson JR, Ferraz S FDB, Louzada J, 

Oliveira VHF, Parry L. Ribeiro De Castro 
Solar R, Vieira ICG, Aragaõ LEOC, Begotti 
RA, Braga RF, Cardoso TM, Jr RCDO, 
Souza CM, Gardner TA. Anthropogenic 
disturbance in tropical forests can double 
biodiversity loss from deforestation. 
Nature. 2016;535(7610):144–147. 
Available:https://doi.org/10.1038/nature183
26 

3. Hoang TT, Truong VT, Hayashi M, Tadono 
T, Nasahara KN. New JAXA high-
resolution land use/land cover map for 
Vietnam aiming for natural forest and 
plantation forest monitoring. Remote 
Sensing. 2020;12(17):1–25. 
Available:https://doi.org/10.3390/RS12172
707 

4. Xiao C, Li P, Feng Z. Monitoring annual 
dynamics of mature rubber plantations in 
Xishuangbanna during 1987-2018 using 
Landsat time-series data: A multiple 
normalization approach. International 
Journal of Applied Earth Observation and 
Geoinformation. 2019;77:30–41.  
Available:https://doi.org/10.1016/j.jag.2018
.12.006 

 
5. Truong, Van Thinh, Thanh Tung Hoang, 

Duong Phan Cao, Masato Hayashi, Takeo 
Tadono, K. NN. JAXA annual forest cover 
maps for vietnam auxiliary data. Remote 
Sensing, 2019;11(20):2412. 

6. Gutiérrez-Vélez VH, DeFries R. Annual 
multi-resolution detection of land cover 
conversion to oil palm in the Peruvian 
Amazon. Remote Sensing of Environment. 
2013;129:154–167.  

7. Torbick N, Ledoux L, Salas W, Zhao      M. 
Regional mapping of plantation extent 
using multisensor imagery. Remote 
Sensing. 2016;8(3).  
Available:https://doi.org/10.3390/rs803023
6 

8. Wang B, Jia K, Liang S, Xie X, Wei X, 
Zhao X, Yao Y, Zhang X.. Assessment of 
Sentinel-2 MSI spectral band reflectances 
for estimating fractional vegetation cover. 
Remote Sensing. 2018;10(12):1–20.  
Available:https://doi.org/10.3390/rs101219
27 

9. Kwesi NI. Oil palm mapping using support 
vector machine with Landsat etm + data. 
2012;1–68. 

10. Emmanuel Quacou I. Unsustainable 
Management of Forests in Ghana from 
1900-2010. International Journal of 
Environmental Monitoring and Analysis, 



 
 
 
 

Elisha et al.; JGEESI, 25(5): 1-20, 2021; Article no.JGEESI.69347 
 
 

 
20 

 

2016’4(6):160. 
Available:https://doi.org/10.11648/j.ijema.2
0160406.14 

11. Asubonteng K, Pfeffer K, Ros-Tonen M, 
Verbesselt J, Baud I. Effects of tree-crop 
farming on land-cover transitions in a 
mosaic landscape in the eastern region of 
Ghana. Environmental Management. 
2018;62(3):529–547.  
Available: https://doi.org/10.1007/s00267-
018-1060-3 

12. Villa P, Bresciani M, Bolpagni R, Pinardi M, 
Giardino C. A rule-based approach for 
mapping macrophyte communities using 
multi-temporal aquatic vegetation indices. 
Remote Sensing of Environment. 
2015;171:218–233.  
Available:https://doi.org/https://doi.org/10.1
016/j.rse.2015.10.020 

13. Sun C, Bian Y, Zhou TJP. Using of multi-
source and multi-temporal remote. remote, 
multi-temporal region, subtropical 
agriculture. 2019;19:1–23.  
Available: https://www.mdpi.com/1424-
8220/19/10/2401/htm 

14. Zhang X, Cui J, Wang W, Lin C. A study 
for texture feature extraction of high-
resolution satellite images based on a 
direction measure and gray level co-
occurrence matrix fusion algorithm. 
Sensors. 2017;17(7):1474. 

15. Adjorlolo C, Cho MA, Mutanga O, Ismail R. 
Optimizing spectral resolutions for the 
classification of C3 and C4 grass species, 
using wavelengths of known absorption 
features. Journal of Applied Remote 
Sensing. 2012;6(1):063560–063561.  
Available:https://doi.org/10.1117/1.jrs.6.06
3560 

16. Saini R, Ghosh SK. Crop classification on 
single date sentinel-2 imagery using 
random forest and suppor vector machine. 
XLII(November). 2018;20–23. 

17. Lu D, Weng Q. A survey of image 
classification methods and techniques for 
improving classification performance. 
International Journal of Remote Sensing. 
2007;28(5):823–870. 
Available:https://doi.org/10.1080/01431160
600746456 

18. Richter K, Hank TB, Vuolo F, Mauser W, 
D’Urso G. Optimal exploitation of the 
sentinel-2 spectral capabilities for crop leaf 
area index mapping. Remote Sensing. 
2012;4(3):561–582.  
Available:https://doi.org/10.3390/rs403056
1 

19. Lu, Dengsheng, Li G, Moran E, Dutra L, 
Batistella M. The roles of textural images in 
improving land-cover classification in the 
Brazilian Amazon. International Journal of 
Remote Sensing. 2014;35(24):8188–8207.  
Available:https://doi.org/10.1080/01431161
.2014.980920 

20. Kupidura P. The comparison of different 
methods of texture analysis for their 
efficacy for land use classification in 
satellite imagery. Remote Sens. 2019;11. 

21. Puletti N, Chianucci F, Castaldi C. Use of 
Sentinel-2 for forest classification in 
Mediterranean environments. Ann. Silvic. 
Res. 2018;42:32–38. 

22. Balzter H, Cole B, Thiel C, Schmullius C. 
Mapping CORINE land cover from 
Sentinel-1A SAR and SRTM digital 
elevation model data using random forests. 
Remote Sens. 2015;7:14876–14898. 

23. Hasan S, Shi W, Zhu X, Abbas S. 
Monitoring of land use/land cover and 
socioeconomic changes in South China 
over the last three decades using landsat 
and nighttime light data. Remote Sens. 
2019;11:1–23. 
Available:https://doi.org/10.1016/j.rse.2012
.10.033 
 

_________________________________________________________________________________ 
© 2021 Elisha et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sdiarticle4.com/review-history/69347 


