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Abstract 

 
Diseases and pests pose a significant threat to agriculture, reducing both production and economic viability. 

Banana plants are highly susceptible to various pests and diseases, which can severely affect yield and quality 

if not properly managed. Given the global consumption of bananas, addressing disease issues in these plants 

is crucial. To tackle this challenge, integrating machine learning techniques can enable early disease 

detection. Specifically, combining region-based active contours (using Chan-Vese) with K-Nearest 

Neighbours (KNN) classification offers a comprehensive approach for object detection and classification in 
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images. The hybrid approach enhances segmentation accuracy, adaptability, and generalization across 

different conditions and data types. Compared to traditional methods, this combination provides more robust, 

accurate, and efficient segmentation, making it a significant advancement in real-world applications. This 

technique is also applicable to other agricultural crops and fruits, offering promising results. With an average 

accuracy of 91.63%, the model demonstrates its effectiveness in detecting and classifying banana diseases 

and pests.  

 

 
Keywords: Chan-vese; histogram equalizer; K-Nearest Neighbour (KNN); Principal Component Analysis 

(PCA). 

 

1 Introduction  
 

Region-Based Active Contour (RBAC) models, also known as region-based segmentation models, have become 

a fundamental tool in image processing and computer vision. These models are designed to detect and delineate 

the boundaries of objects within an image by evolving a contour or curve based on region information (Appia 

and Yezzi 2011). Unlike edge-based methods that rely heavily on gradient information and are sensitive to noise 

and weak boundaries, RBAC models utilize the statistical information of regions to achieve more robust 

segmentation results.  

 

The core idea of RBAC is to minimize an energy functional that integrates the differences between the statistical 

properties of the regions inside and outside the contour. Typically, these properties include intensity, texture, 

and color. By leveraging this regional information, RBAC models can effectively handle images with intensity 

inhomogeneity, complex structures, and occlusions (Appia and Yezzi 2011, Comelli et al. 2019).  

 

One of the pioneering approaches in RBAC is the Chan-Vese model, which formulates the segmentation 

problem as a variation problem (Saini et al. 2012, Wong and Rajendran 2019). This model introduces a level set 

method to represent the evolving contour implicitly, allowing for topological changes such as splitting and 

merging. The Chan-Vese model minimizes an energy functional that is composed of data fidelity and 

regularization terms, making it a powerful and flexible tool for various image segmentation tasks (Saini et al. 

2012). 

 

Over the years, RBAC models have been extended and refined to incorporate additional information and 

constraints, leading to improved performance in diverse applications such as medical imaging, object tracking, 

and scene understanding. These advancements have solidified RBAC as a versatile and essential technique in 

the toolbox of modern image analysis. Region-Based Active Contour models have emerged as a pivotal tool in 

the realm of plant disease analysis, significantly enhancing the accuracy and efficiency of disease detection and 

monitoring (Saini et al. 2012). These models leverage regional information within images to delineate diseased 

areas, providing a robust solution to the challenges posed by the complex visual characteristics of plant 

diseases.  

 

Plant disease detection often involves analysing leaf images where symptoms such as spots, discolorations, or 

texture changes need to be accurately identified and segmented. Traditional methods relying on edge detection 

or manual inspection are often insufficient due to varying intensity, shape, and spread of disease symptoms. 

RBAC models address these challenges by utilizing the statistical properties of the image regions to evolve a 

contour that precisely encloses the affected areas (Saini et al. 2012, Wong and Rajendran 2019). A notable 

application of RBAC in plant disease analysis is the segmentation of lesions caused by bacteria, fungal, or viral 

infections. By minimizing an energy functional that accounts for the intensity and texture differences between 

healthy and diseased regions, RBAC models can accurately isolate the symptomatic areas, even in the presence 

of noise or uneven illumination (Comelli et al. 2019). This capability is particularly beneficial for early disease 

detection, where subtle symptoms need to be identified before they become visually obvious. RBAC models 

have not only improved the speed and accuracy of disease detection but have also contributed to more 

sustainable and effective plant health management practices. 
 

2 Literature Review 
 

This section discusses the various works as carried out by different researchers that are related to our study.  
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(Rahaouma et al. 2021) in their study introduces a computer-aided detection (CAD) system using computed 

tomography (CT) scans for lung nodule classification, incorporating image processing, segmentation, feature 

extraction via Discrete Wavelet Transform (DWT) and classification using Polynomial Neural Network (PNN), 

achieving a high accuracy of 96.66%.  

 

The study made by (Radhi and Kamil 2021) compares snakes and level sets for breast tumour segmentation in 

mammograms, with Chan-Vese showing superior performance (90%, 95%, 98%, 97%, and 97%) in Jaccard, 

Dice, PF-Score, Precision, and Sensitivity metrics, highlighting its reliability for computer-assisted detection 

systems.  

 

(Deriche et al. 2019) in their paper introduces a robust image segmentation method combining convex active 

contours with the Chan-Vese model, minimizing user input dependency and enhancing segmentation accuracy 

across diverse image types. Experimental results demonstrate superior performance in both processing time and 

segmentation accuracy compared to recent methods across standard image databases. 

  

(Ali et al. 2017) in their paper introduces a method ΔE color difference and texture features for automatic 

detection and classification of citrus diseases, achieving 99.9% accuracy and comparable sensitivity, validated 

by Area Under Curve (AUC) of 0.99. Feature reduction via Principal Component Analysis (PCA) and testing 

with advanced classifiers further substantiates the robustness of the proposed approach.  

 

(Zhang et al. 2002) in their paper demonstrates the efficacy of PCA and cluster analysis for distinguishing late 

blight infected tomatoes from healthy ones based on spectral characteristics. It highlights the potential of 

spectral ratio analysis to identify sensitive wavelengths critical for accurate disease detection in remote sensing 

applications.  

 

(Füzy et al. 2019) in their study uses PCA to identify key indicators of drought and salt stress in plants, 

highlighting parameters such as root electrical capacitance, membrane stability index, leaf relative water 

content, and SPAD units as sensitive stress indicators across diverse experimental setups.  

 

(Amato and Falchi 2010) in their study introduces a novel kNN (k Nearest Neighbour) based image 

classification method focusing on local feature similarity, enhancing efficiency and effectiveness in landmark 

recognition tasks using various types of local features.   

 

3 Materials and Methods  
 

3.1 Histogram equalizer 
 

Histogram equalization is a technique in image processing used to improve the contrast of an image (Cheng and 
Shi 2004). This method can be particularly useful in plant disease classification, where high-contrast images can 

enhance the visibility of disease symptoms on plant leaves, stems, or fruits. Histogram equalization works by 

redistributing the intensity values of an image so that they span the entire range of possible values (Garg and 
Jain 2017, Saifullah and Dreżewski 2023). This process makes the image details more visible and improves the 

overall contrast. The histogram of the image is computed which shows the frequency of each intensity value. 

For representing the cumulative sum of the histogram values, the Cumulative Distribution Function (CDF) is 

calculated. The CDF is normalized so that its value ranges from 0 to 1 (Garg and Jain 2017). The normalized 

CDF is utilized to map the original intensity values to new values, resulting in a contrast-enhanced image. 

Histogram equalization is a valuable preprocessing step in the context of plant disease classification (Saifullah 

and Dreżewski 2023). By improving the contrast of plant images, it facilitates the extraction of more distinct 

features, thereby enhancing the accuracy of disease detection and classification. This technique, combined with 

robust classification algorithms, can significantly contribute to the effective management and diagnosis of plant 

diseases. 

  

3.2 Chan – Vese algorithm 
 

The Chan-Vese algorithm is a method used in image processing and computer vision for image segmentation. It 

is based on the level set method and is particularly effective for segmenting objects in images with weak or 

missing boundaries. It segments an image into regions, typically foreground and background, based on their 

https://www.researchgate.net/publication/356771233_Lung_Cancer_Diagnosis_Based_on_Chan-Vese_Active_Contour_and_Polynomial_Neural_Network
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intensities (Saini et al. 2012). It is built on the Mumford-Shah functional for segmentation and utilizes the level 

set method to represent the contour. In the Chan-Vese algorithm, the evolving contour is represented as the zero-

level set of a higher-dimensional function (Saini et al. 2012).  The algorithm aims to minimize an energy 

functional that depends on the contour and the image data. This energy functional typically has terms that 

represent the difference in intensities inside and outside the contour, as well as regularization terms to ensure 

smoothness. The process continues until the contour stabilizes, indicating that the optimal segmentation has 

been found. 

 

3.3 Principal component analysis  
 

Principal Component Analysis (PCA) is a statistical technique used to reduce the dimensionality of data while 

retaining most of the variation present in the database (Li et al. 2016, Zhang et al. 2023). In the context of plant 

disease detection and classification, PCA can be employed to simplify complex image data, making it easier to 

process and analyze while preserving critical information about disease symptoms. PCA transforms the original 

data into a new coordinate system, where the greatest variance by any projection of the data comes to lie on the 

first coordinate (the first principal component), the second greatest variance on the second coordinate, and so on. 

This transformation allows for a reduced representation of the data that captures the most important features (Li 

et al. 2016).  Firstly, it should be ensured that each feature has a mean of zero and a standard deviation of one. 

The covariance matrix is computed to understand the relationships between different features. Eigenvalues and 

eigenvectors of the covariance matrix are calculated. The eigenvectors represent the principal components, and 

the eigenvalues indicate the amount of variance captured by each principal component. A feature vector is 

formed by selecting the top ‘k’ eigenvectors based on their corresponding eigenvalues. The original data is 

projected onto the new feature space using the feature vector, resulting in a reduced dataset. By reducing the 

complexity of the feature set, PCA helps in focusing on the most significant features, thereby improving the 

efficiency and effectiveness of classification algorithms (Li et al. 2016, Zhang et al. 2023). 

 

3.4 Standard scaler 
 

Standard scaling, also known as Z-score normalization, is a preprocessing technique used to standardize the 

features of a dataset. In the context of plant disease detection and classification, applying a standard scaler helps 

to normalize the features extracted from plant images, ensuring that each feature contributes equally to the 

analysis (Thara et al. 2019). Standard scaling transforms the data such that it has a mean of zero and a standard 

deviation of one. This ensures that all features are on a comparable scale, which is particularly important for 

algorithms sensitive to feature scales, such as k-Nearest Neighbours (KNN) or Support Vector Machines 

(SVM). The working of Standard Scaler is as follows. At first the mean (µ) and standard deviation (σ) for each 

feature in the dataset is computed (Thara et al. 2019).  Subtract the mean and divide by the standard deviation 

for each feature (Thara et al. 2019).  

                                            

x`= x - μ                                                                                                                                                   (1) 

 

Where x is the original feature value, and x` is the standardized feature value. 

 

3.5 K-Nearest neighbour  
 

The k-Nearest Neighbours (KNN) algorithm is a simple, yet powerful, supervised machine learning algorithm 

that is used for both classification and regression tasks (Pandey and Jain 2017). KNN is based on the concept of 

similarity or distance between data points (Fan et al. 2021). KNN operates on the principle that similar instances 

exist near each other. The algorithm identifies the ‘k’ closest data points to a given test instance and assigns the 

most common label (for classification) or the average value (for regression) among these neighbours to the test 

instance (Pandey and Jain 2017). Various distance metrics like Euclidean, Manhattan, or Minkowski distances 

are used to measure the closeness between data points. For classification, the majority class among the 

neighbours is assigned to the test instance. For regression, the mean value of the neighbours is assigned. In 

KNN, the entire dataset is used during testing (Fan et al. 2021, Wekalao et al. 2024).  
 

The KNN algorithm is a widely used machine learning technique for classification tasks. Its simplicity and 

effectiveness make it particularly useful in fields such as plant disease classification, where the goal is to 

categorize plant conditions based on visual symptoms. It can classify different diseases affecting plants by 
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analysing features extracted from images of plant leaves, stems, or fruits. These features may include color, 

texture, shape, and other visual characteristics (Comelli et al. 2019). KNN is easy to understand and implement, 

making it accessible for researchers and practitioners. KNN can perform well even with relatively small 

datasets, which is often the case in plant diseases classification (Pandey and Jain 2017). Plant disease datasets 

are often imbalanced, with some diseases being underrepresented. This can affect the accuracy of KNN, which 

may require techniques like oversampling or synthetic data generation.  

 

3.6 Methodology 
 

The dataset comprises ten thousand images of banana plants affected by seven different diseases and pests. The 

classes include Black Sigatoka, Yellow Sigatoka, Panama disease, Pseudostem Weevil, Banana Aphids, 

Scarring Beetle, and Bacterial Soft Rot. All images are initially converted to grayscale to reduce computational 

complexity and focus on intensity variations which are essential for subsequent processing steps. Histogram 

equalization technique (Saifullah and Dreżewski 2023) is applied to the grayscale images to improve the 

contrast. The equalizer redistributes the intensity values of the pixels to span the entire range, enhancing the 

visual contrast and highlighting features that are important for disease and pest identification.  

 

Chan-Vese Region-Based Active Contour Segmentation method is used to segment the histogram equalized 

images. The Chan-Vese model is effective for segmenting objects in images where the boundaries are not well-

defined. It operates by evolving a contour to partition the image into regions, minimizing the difference in 

intensities within each region (Soltaninejad et al. 2012). This helps in isolating the affected areas from the 

healthy parts of the banana plant in the images.  

 

PCA is employed to reduce the dimensionality of the feature space. By transforming the original high-

dimensional data into a lower-dimensional form, PCA helps in capturing the most significant features while 

discarding redundant information (Zhang et al. 2023). Texture features, which capture the surface characteristics 

and patterns of the banana diseases and pests, are crucial for distinguishing between the different classes of 

diseases and pests based on their visual appearance.  

 

The KNN algorithm is used to classify the images into the seven categories of banana diseases and pests. KNN 

is a simple, yet effective, classification method that assigns a class to an image based on the majority class 

among its k-nearest neighbours in the feature space (Wekalao et al. 2024). The distance metric, usually 

Euclidean, is used to determine the nearest neighbours, and the value of k is chosen based on cross-validation to 

optimize the classifier’s performance (Soltaninejad et al. 2012).  

 

3.6.1 Evaluation metrics 

 

The performance of the proposed model was assessed using a range of widely recognized and relevant 

evaluation metrics. Specifically, the model was evaluated based on standard metrics including precision, recall, 

and F1-Score, which are commonly used to measure classification effectiveness in various domains.  

 

• Precision – It measures the accuracy of positive predictions by calculating the ratio of true positive 

predictions to the total number of positive predictions. 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                               (2) 

 

High precision means the model predicted correctly. 
 

• Recall – It measures the relevant positive instances by calculating the ratio between true positive 

predictions to the total number of actual positive instances. 
  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                  (3) 

 

• F1-Score – F1-Score is the harmonic mean of precision and recall. It balances both precision and recall. 
 

𝐹1 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                                                      (4) 
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High F1-Score indicates a good balance between Precision and Recall. 

 

4 Results and Discussion 
 

This section details the results of each step in the methodology, highlighting the effectiveness of the 

preprocessing, segmentation, dimensionality reduction, and classification techniques used in this study. 
 

The first step in our workflow was to convert the RGB images (Fig. 1(A)) into grayscale images (Fig. 1(B)). 

This conversion simplifies the data by focusing on intensity variations, which are crucial for detecting disease 

symptoms and pests on banana plants. Histogram equalization was applied to the grayscale images to enhance 

contrast, as illustrated in Fig. 1(C). This step distributed the intensity values, making important features more 

distinguishable. 
 

 
(A) 

 

 
(B)                                     (C) 

 

Fig. 1. Sample images (A) exhibiting the original image, (B) Grayscale image, and (C) the Histogram 

Equalized Image 
 

Following histogram equalization, the Chan-Vese (Region Based Active Contour) segmentation algorithm was 

applied to the images. The Chan-Vese method is effective for segmenting objects where boundaries are not 

well-defined, which is essential for isolating affected areas from healthy parts of the banana plants. The 

segmented images are presented in Fig. 2(E). 

 

 
(D)                                          (E) 

 

Fig. 2. Sample images (D) exhibiting the Equalized image, (E) Chan-Vese segmented Image 
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Principal Component Analysis (PCA) was employed on the combined dataset to reduce its dimensionality to 2 

for visualization purposes. A scatter plot of the principal components was generated, revealing the distribution 

of images in the reduced space which is shown in Fig. 3. Additionally, a heatmap of PCA was created after 

applying Z-score normalization and hierarchical clustering, as shown in Fig. 4.  
 

 
 

Fig. 3. Scatter plot of principal component analysis of images with color-coded labels 
 

 
 

Fig. 4. Heat map of principal component analysis after applying Z-score of normalization 
 

The data was standardized using StandardScaler before PCA. The heatmap visualization provided valuable 

insights into the structure and relationships within the dataset, showing how the original features contributed to 

the principal components and the variance explained by each component.  
 

A KNN classifier was used to classify the features extracted by the PCA feature extractor. The KNN classifier 

was instantiated with 2 neighbours. The hybrid approach using KNN for classification enhances generalization 

to variable object shapes, allowing the system to recognize features that a purely geometric method might miss. 

This integration enables faster, more adaptable systems that can evolve with new data, reducing the need for 

frequent retraining. KNN helps the active contour adapt to nuanced object characteristics, improving 

segmentation, especially in challenging areas like textureless regions or complex boundaries.  
 

Upon training the model, various parametric metrics were generated. The confusion matrix, displayed in Fig. 5, 

provides a clear view of the models’ performance in terms of true positives, true negatives, false positives, and 

false negatives.  
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Fig. 5. Confusion matrix generated from the K-Nearest Neighbour classifier 
 

To evaluate the robustness of the model, k-Fold Cross-Validation was applied, dividing the data into k equally 

sized folds. The model was trained on k-1 folds and tested on the remaining fold. This process was repeated k 

times, with each fold used exactly once as the test set. The final performance metric was the average of the 

metrics obtained from each fold.  
 

Cross-Validation Scores: [0.97979798 0.95959596 0.96464646 0.93939394 0.93434343 0.94444444 

0.95959596 0.93939394 0.88832487 0.64974619 0.62944162 0.97461929 0.96954315 0.95939086 0.93908629 

0.94416244 0.93908629 0.95939086 0.94923858 0.9035533] 
 

Mean Accuracy: 0.9163397938778649 
 

The cross-validation scores, representing the accuracy of the model on each fold, indicated a mean accuracy of 

91.63%. Our array suggested a k-fold cross-validation with 20 folds, as there were 20 performance metrics 

listed. The data was divided into 20 parts, each part used once as a validation set while the remaining 19 parts 

were used for training in each iteration. The average accuracy of 91.63% provides an overall performance 

estimate for the model, demonstrating its effectiveness in classifying banana diseases and pests.  
 

The ROC (Receiver Operating Characteristic) curve illustrated in Fig. 6, was calculated to evaluate the 

performance of the KNN classifier in terms of its ability to discriminate between different classes. Our model 

demonstrates a strong ROC curve during classification. The curve shows a high True Positive Rate (Sensitivity), 

indicating that our model is performing well and accurately identifying the positive cases.  
 

 
 

Fig. 6. Generation of receiver operating characteristics curve after classification 
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From the model we can indicate that a high precision is accurate for most of the predicted class. False positives 

are relatively rare, and the model does not incorrectly label regions. The high recall value indicates that the 

model identifies all relevant instances of the target class. In the context of active contour models, the model 

successfully identifies most of the important contours without missing them. There is also a good balance 

between the precision and recall. The model is both accurate and comprehensive. The values of the evaluated 

matrices are given in Table 1. 
 

Table 1. Classification report of modified region based active contour model 
 

Class Precision Recall F1-Score 

APHID 0.99 1.00 0.99 

B_SIGATOKA 0.98 1.00 0.99 

PANAMA 0.98 1.00 0.99 

SOFT_ROT 0.99 1.00 1.00 

S_BEETLE 1.00 0.99 1.00 

WEEVIL 1.00 0.98 0.99 

Y_SIGATOKA 1.00 0.98 0.99 
 

5 Conclusion 
 

The proposed methodology offers a systematic approach to image classification, from preprocessing and feature 

extraction to model training and evaluation. By incorporating advanced techniques such as region-based active 

contour transformation and dimensionality reduction, it aims to enhance the accuracy and interpretability of 

classification results. Additionally, the use of performance evaluation metrics ensures a robust assessment of the 

classifier’s performance, enabling informed decision-making in real-word applications.   
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